
10.1515/tvsb-2017-0031 

  79 

Transactions of the VŠB – Technical University of Ostrava 
Civil Engineering Series, Vol. 17, No. 2, 2017 

paper #31 

Milan MORAVČÍK1, Martin MORAVČÍK2 

DYNAMIC RESPONSE OF RAILWAY BRIDGES SUBJECTED TO PASSING 
VEHICLES 

Abstract 

This paper discusses some issues related to dynamic effects in railway bridges focussed on the 
dynamic behaviour of the small and medium span simply supported railway bridges subjected to a 
series of moving vehicle. Presented parametric study is focused on the dynamic deflection of the 
simply supported railway bridge of the span Lb = 38 m, due to the series moving loads representing a 
conventional train with the IC-coaches, with the impact to the speed up to 160 km/h applied in 
Slovakia.  

Keywords 

Dynamic response, railway bride deflections, the modal superposition method  

 1 INTRODUCTION 
The dynamic response of railway bridges subjected to moving trains is influenced by a number 

of factors such as the speed of load, the bridge span, natural frequencies of the bridge and railways 
vehicles, the inertia and damping of the two interaction systems (vehicles and the bridge), the 
distance between the vehicles, and arranging axles of vehicles. At present, the actual question for the 
bridge loading follows from high speed trains, which may consist of a number of identical cars 
connected together moving with the speed c. In these cases the resonance caused by configuration of 
the train consisting of a number of vehicles similar types (Fig.1) may occur especially at high speed 
ranges. 

To solve indicated problems need to apply the special dynamic analysis depending on the type 
of the bridge structure with regard of the static determination of the structure. For statically 
indeterminate structures, like continuous deck bridges or frame structures, more sophisticated 
methods of analysis (FEM) must be applied. For the simple bridges the solution is based on the 
modal superposition method. 

 
Fig. 1. Loading of the bridge by a series of identical IC-vehicles. 
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Railway vehicles travelling along the bridge are modelled as a series of identical moving loads 
and assuming the vehicle/bridge mass ratio is small mv<<mb and loads move along the bridge, the 
close form of solution can be obtained. The dynamic displacement ( , )w x t  and acceleration ( , )w x t&&  
of the bridge are governed at different extents by two sets of frequencies:  

- driving frequency of a vehicle (j),drω crosses the bridge. j=1,2...,  

- natural frequency of the bridge ( )jω , j=1,2,... 

One of the actual problems is the solution the dynamic behaviour of the bridge subjected to a 
series of identical loads n

n
P , n=1,2,..N, with identical space intervals dv (the length of the vehicle) 

travelling across the bridge with a constant speed c as is shown in Fig.2. 
 In this paper the dynamic behaviour of the simply supported railway bridge with the span Lb 

= 38 m, subjected to the successive identical moving loads is solved. The close form solution is 
applying by means of the modal superposition method [1, 2]. The presented parametric study is 
focused on the dynamic deflection of the bridge at the mid-span 2( / 2, t)w L  due to loading of the 
conventional train with the IC-coaches (coaches are supported by the two bogies, (Fig.2) and with the 
impact to the moving speed up to 160 km/h.   

 
Fig. 2. The single-span bridge subjected to moving loads n

n
P . 

Using the analytical approach, the key parameters that govern the dynamic displacement 
response – the vertical beam vibration

1 2

( )
( , ,..... ) ( , )

n

c
P P Pw x t , for n = 1, 2, 3…M loads moving on the 

bridge are applied on the railway steel girder of the length Lb = 38 m loaded by the IC-cars length dv= 
24,5 m with the magnitude Pv = 524 kN, Fig. 1.  

 2 FORMULATION OF THE THEORY FOR THE BRIDGE RESPONSE 
INDUCED BY MOVING LOAD SERIES 
 Consider a simply supported beam (without damping) subjected to a series of concentrated 

constant loads P which move at a uniform speed c in the meaning of Fig. 2. The motion equation 
for the beam subjected periodically loading of moving load series can be writing as 
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where:  
( , t)w x - is the displacement of the beam at point x and time t [m], 

EI - is the bending stiffness of the beam [kNm2], 
m1 - is the mass per unit length of the beam [t], 
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,v i iP P≡  - is the loading force [kN], 

( )xδ  - is the Dirac function,  

c - is a uniform speed of moving loads [m/s], 
Lb - is span length of the bridge [m],  
dv  - is identical interval between loading forces [m]. 

For a simple beam the solution of the vertical deflection ( , t)w x in Eq. (1) becomes the 
harmonic analysis. The particular solution ( , t)w x for a simply supported beam can be expressed in 
term of modal time coordinates ( ) ( )jq t for the beam vibration and the modal shapes ( )j xφ as 

                      ( ) ( ) ( ) ( ) ( ) ( ), . sin( )jj j
j j b

j xw x t q t x q t
L
πφ= =  , j=1,2,3...,                        (2) 

where: 

( ) ( )jq t - are the generalized coordinates that define the amplitude of vibration with time t, 

( ) sin( )j
b

j xx
L
πφ = - is a fundamental mode shape and for the simply beam is of the sinusoidal type (the 

first mode is a one-half cycle; the second mode is a full cycle). 
Thus, the dynamic deflection may be represented by the summation of modal components. 

When the first and last moving load on the bridge span be P1 and PM at time t, Eq. (1) can be 
expressed in terms of the generalized coordinates as 

  ( ) ( )
( ) ( )

2 -1
2

( )2
01

2 sin( ( ))
M

j v
j nj

nb b

d q t ndP j cq t t H
m L L cdt

πω
=

+ = − , n=1,2,..M                       (3) 

for M forces moving on the bridge, 
where: 

( ) ( ( + ))v v b
n

nd nd LH t t
c c c

θ θ= − − − is the Heaviside function determining whether the load nP is on the 

bridge or not. 
The modal coordinate ( ) ( )jq t for the j-th mode of vibration of the beam from Eq. (3) can be 

expressed as [1, 2]: 

          1
(j)st

( ) ( )dr ( ) ( )2
0( )

ˆ
( ) sin( (t )) sin( (t )) ( )

1

M
v v

j j j j n
nj

q nd ndq t H t
c c

ω α ω
α

−

=

 = − − − −  
 ,                     (4) 

where:  
3

( ) st 2 4 4
1 ( )

22ˆ b
j

b j

PLPq
m L j EIω π

= =  - is the modal amplitude - the static deflection caused by the force P with 

respect to the j-th mode, 
2

( ) 2
1

j
b

j EI
mL

πω =  - is the j-th circular frequency of the beam vibration,  

( )
( )

( )

j dr
j

j cr

c
c

ω
α

ω
= ≡  is the non-dimensional speed parameter,  

(1)
(1)2 b

cr b

L
c f L

ω
π

= =  is the critical speed,        
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( )drj
b

j c
L
πω =  - is the circular driving frequency of the moving force for the j-th mode of vibration. 

      2.1 Single-mode analytical solution  
The vertical deflection ( , t)w x in Eq. (1) for a simply supported beam for a moving load 

problem can be well simulated by considering the first mode of vibration (1)ω only. The 
corresponding modal coordinate from Eq. (4), taking into account M-vehicles on the bridge, is given 
by superposition of a forced response (a quasi-static response) due to the moving load and a transient 
response (the dynamic part of the response) can be expressed as follows: 

                 
1 2

-1
(1)( )

(1),( , ....... ) (1) (1) ( )2
0(1)

ˆ
( ) sin( ( )) sin( ( )) ( )

1M

M
stc v v

P P P dr j n
n

q nd nd
q t t t H t

c c
ω α ω

α =

 = − − − −  
 ,                (5) 

where:  
(1)

(1)
(1) (1)

dr

b cr

c c
L c

ω πα
ω ω

= = =  is the non-dimensional speed parameter corresponding to the first mode of 

vibration (1)ω , 

 The vertical deflection
1 2

( )
(1),( , ,..... ) ( / 2, )

N

c
P P P bw L t for the mid-span / 2bx L=  is equal the modal 

coordinate
1 2

( )
(1),(P , ,..... ) ( / 2, )

N

c
P P bq L t , because sin( sin( / 2) 1,0

)b

x
L
π π= = . 

                 
1 2 1 2
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-1
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(1) (1) ( )2
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1

M N

c c
P P P b P P

M
st v v
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n

w L t q t
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t t H t

c c
ω α ω

α =

= =

 = − − − −  


           (6) 

 

       2.2 The displacement response at the mid-span of the beam  
 The important practical significance is just the dynamic deflection 

1 2

( )
(1),( , ,..... ) ( / 2, )

N

c
P P P bw L t at 

the mid-span / 2bx L=  for loads a moving series (P1,P2 ,....PN).  If the number of the load moving out 
of the span is K and the number of moving forces moving just on the span is M at the time t, the 
displacement response of the beam can be generalized considering the superposition of the next 
loading effects [1,6,7]:  
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             (7) 

for n = 1,2,3,….N = M+K, and for sin( / 2) 1,0π = .      
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The first term in Eq. (7) represents the component corresponding to each moving load Pn 
travelling over the beam – it produces the force vibration response (the quasi-static part of the 
response). The second and the thirty term in Eq. (7) produces the free vibration response (the 
dynamic part of the response) considering forces moving just on the beam and forces moving away of 
the span. The fourth term in Eq. (7) represents the free vibration term after all moving loads left the 
span. Thus, the beam response 

1 2

( )
(1),( , ,.....P ) ( / 2, )

N

c
P P bw L t can be symbol written as 

                    1 2 1 2

1 2 1 2

( ) ( )
(1),( , ,.....P ) (1) st,( , ,.....P )

( ) (1) ( ) (2)
(1) dyn,( , ,.....P ) (1) dyn,( , ,.....P )

( / 2, ) ( / 2, )

( / 2, ) ( / 2, )
N M

M K

c c
P P b P P b

c c
P P b P P b

w L t w L t

w L t w L t

= +

+ +
                            (8) 

      3. THE DISPLATE SINGLE-SPAN RESPONSE UNDER SEQUENCE OF 
MOVING LOAD (P1+P2+.....+P10) CROSSING THE BEAM  
The steel truss bridge Lb=38 m is subjected by the series of 10 IC-cars (P1+P2+...P10) in the 

sense of Fig. 3. The load of equal weight P = 524 kN is spaced at the car interval dv=24,5 m, the train 
speed is c2 =33 m/s=118,8 km/h. As was stated above it is essentially a transient problem with very 
short acting time. 

  
Fig. 3. The beam subjected to the series of loads (P1+P2+.....P10) moving across the beam. 

 
Input parameters: The bending stiffness of the bridge for the two rail loading model is: EI = 

7,58.107 kNm2, the beam mass per unit length 1 1(BStr) 1(Sup)m m m= +  = 3,18 t/m,  the first circular 

frequency of the bridge
2

(1) 2
1b

EI
mL

πω = = 33,34 [s-1], (1)ˆ (L / 2)st bw  = 0,00786 [m], 

2( ) 2
(1)

3,14.33
38

c
dr

b

c
L

πω = =  = 2,73 m-1, (1)
2
(1)

ˆ ( / 2)
1

st bw L
α−

= 0,0079[m],  ( )

( )

1
(1)

1

drω
α

ω
=  =0,0819 ,  

( )
2

b
b P

L
t

c
=  =1,1515, 24,5

33
vd

c
=  = 0,7424 s,  the damping coefficient dω  is expressed by means the 

logarithm decrement ϑ : (1)
( ) 2d dampf

ω
ω ϑ ϑ

π
= = = 0,1327 s-1. 

     3.1. Components of the beam deflection due to the sequence of load IC-cars 
(P1+P2+…P10) 
Components of the beam response due to the sequence of load IC-cars (P1+P2+…P10) are 

defined by expressions (7). 
 
 

P1 P2 P3 P4 P10 

c

dv=24,5m dv dv dv dv 

Lb=38 m 
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 Quasi-static component 2

1 2 10

( 33)
(1)st,( , ,... ) ( / 2, )c

P P P bw L t=   

The quasi-static component of the response includes the effect of forces (P1+P2+.....P10) 
moving over the beam (without damping) and is defined by the first term in Eq. 7. Because drawing 
the displacement w downward direction there is apply the sign minus. The result is plotted in Fig. 4.  

            2 2

1 2 10 2

9
(1)( 33) ( 33)

(1) st,( , ,... ) (1) (n)( 33) 2
0 2(1)

ˆ ( / 2)
( / 2, ) sin ( )

1

M
st bc c v

P P P b drc
n

w L nd
w L t t H

c
ω

α

=
= =

=
=

  
= − −  −   

            (9) 

Result 2

1 2 10

( 33)
(1)st,( , ,... ) ( / 2, )c

P P P bw L t=  

 
Fig. 4. The quasi-static component of the deflection 2

1 2 10

( 33)
(1)st,( , ,.....P ) ( / 2, )c

P P bw L t= : Axes: 
 x= t[s],y= w[m], the load (P1,P2...P10) =10x528 kN that move over the beam, tb = 0 to 7,8331s. 

 
 Dynamic component 2

1 2 10

( 33) (1)
(1)dyn,( , ... ) ( / 2, )c

P P P bw L t=  
 The dynamic component of the beam deflection includes the response defined by the second 

term in Eq. 7. This dynamic response  is plotted in Fig. 5. 

          ( )
2 2
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9
(1)( 33) ( 33)(1)

(1) (n)1( 33) 2
0 2(1)
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Result 2

1 2 10

( 33) (1)
(1)dyn,( , ... ) ( / 2, )c

P P P bw L t=  

 
Fig. 5. The dynamic component 2

1 2 10

( 33) (1)
(1)dyn,( , ... ) ( / 2, )c

P P P bw L t= : Axes: x= t[s], y= w [m] for the 
loads (P1+P2,...+P10)=10x528 kN, that move direct over the beam for tb = 0 to 7,8331s. 
 

 The total deflection beam response 2

1 2 10

( 33) ( )
(1),( , ... ) ( / 2, )c a

P P P bw L t= for the load (P1, P2, 

….P10) moving direct over the beam 
The deflection response 2

1 2 10

( 33)
(1),( , ... ) ( / 2, )c

P P P bw L t= , belong to the load (P1, P2,….P10) =10x528 
kN, moving direct over the beam and is superposition quasi-static and the dynamic component. 
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Because drawing the displacement w downward direction there is apply the sign minus. The result is 
plotted in, Fig. 6. 

     2

1 2 10 1 2 1 2

( 33) ( ) ( ) ( ) (1)
(1),( , ... ) (1)st,( , ,.....P ) (1)dyn,( , ,.....P )( / 2, ) ( / 2, ) ( / 2, )

N N

c a c c
P P P b P P b P P bw L t w L t w L t= = +  (11) 

Result 2

1 2 10

( 33) ( )
(1),( , ... ) ( / 2, )c a

P P P bw L t=  

 
Fig. 6. The deflection response 2
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( 33) ( )
(1),( , ... ) ( / 2, )c a

P P P bw L t= , Axes: x= t[s], y= w [m] for the loads 

(P1+P2,...+P10)=10x528 kN that move over the beam, 2

1 2 10

( 33) (a)
( , ........ )

0,0095
0,0085

c
dyn P P P

= Δ =  = 1,1176. 

 Dynamic component  2

1 2 10

( 33) (2)
(1)dyn,( , ... ) ( / 2, )c

P P P bw L t=  - the load moving (P1,P2….P10) out of 
the span    

 This dynamic component belong to loads (P1,P2….P10), that have passed the beam, but 
they still influence the response. The result is plotted in, Fig. 7. 
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ω
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=
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=

=

 
 − 
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Result 2
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(1) dyn,( , ... ) ( / 2, )c

P P P bw L t=  

 
Fig. 7. The dynamic component 2
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( 33) (2)
(1)dyn,( , ... ) ( / 2, )c

P P P bw L t= : Axes: x= t[s], y= w [m], for the loads  

(P1, P2..........P10) = 10x528 kN that have passed the beam, t = 0 to 12 s. 
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 Components of the total response – superposition 

 The components of the total deflection response 2

1 2 10

( 33)
(1),( , ... ) ( / 2, )c

P P P bw L t= , belong to the 
load (P1, P2,….P10) that move direct over the beam and to the loads that have passed the beam. The 
components are described by Eq. (9), (10) and (12). The components of the total deflection 

2
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(1)dyn,( , ,.....P ) ( / 2, )c

P P bw L t= , 2

1 2 10

( 33) (2)
(1)dyn,( , ,.....P ) ( / 2, )c

P P bw L t=  are  plotted 
in, Fig. 8. 
Result 

 
Fig. 8. Components of the total deflection: 2
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P P bw L t= ,                   
2

1 2 10

( 33) (1)
(1)dyn,( , ,.....P ) ( / 2, )c

P P bw L t= : Axes: x=t[s], y=w[m]. 

     3.2. The total response due to the series of loads IC-cars (P1+P2+…P10) 
The total response 2

1 2 10

( 33) ( 2)
(1),( , ... ) ( / 2, )c a

P P P bw L t= +  due to the series of load IC-cars (P1+P2+…P10) is 
defined superposition quasi-static and the dynamic components described by expressions (9), (10) 
and (12). The beam response 

1 2

( ) ( 2)
(1),( , ,.....P ) ( / 2, )

N

c a
P P bw L t+ can be symbol written as 

                                  
2 2

1 2 10 1 2 10

2 2

1 2 10 1 2 10
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(1),( , ... ) (1) ,( , ,.....P )
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P P P b st P P b
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P P b P P b
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w L t w L t
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+ +
                         (13) 

The result is plotted in Fig. 9. 

 
Fig. 9. The total beam displacement response 2

1 2 10

( 33) ( 2)
(1),( , ... ) ( / 2, )c a

P P P bw L t= + : Axes: x=t[s], y=w, 

for t= 0 to 8.5755 s, 2
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 Comparison the dynamic amplifier factor 2

1 2 10

( 33) (a)
( , ........ )

0,0095
0,0085

c
dyn P P P

= Δ =  = 1,1176, for the 

deflection corresponding to the moving the load directly acting on the beam and 
2

1 2 10

( 33) (a 2)
( , ........ )

0,012
0,0085

c
dyn P P P

= +Δ = =1,4118 corresponding also the effect of the residual free vibration 

caused by moving loads that have passed the beam, demonstrates the gain of the DAF.2 at 26,3%. 
 

     3.3. Main factors influencing the beam response  
When all the moving loads have passed the beam, the force part of the vibration terminates 

immediately. However, the free vibration part continues to exit until it is eventually damped out. Our 
parametric studies for different train speeds show that both the phenomena of resonance and 
cancellation are related to the free vibration component of the beam vibration only. Thus, the sum of 
the free vibration response components by each moving load can results in the resonance if the total 
number N of the moving loads is large enough.   

If the forces act on the bridge at equidistance distances dv then their repeated action can cause 
a resonant vibration. The resonant condition follows from the well know condition [Náprstek, Li,Su]: 

( ) (1)vdkf f=  →  (1)

2v

ck
d

ω
π

=  , k=1,2,3…,                           (14) 

The resonant condition (14) is calculated from the time necessary for crossing the distance dv at the 
speed c which is equal to the k-multiple of the natural beam vibration f(1). From the Eq. (14) results 
the resonant speed  

         (1)
( , ) 2

v
i res

d
c

k
ω

π
=  k=1,2,3...               (15) 

Critical speeds ( , )i resc according to Eq. (15) are in Tab. 1. 

Tab. 1 Critical speeds for train with IC-cars (dv=24,5 m) and for Lb = 38 m. 

k       (1)
, 2

v
i res

d
c

k
ω

π
= for Lb=38 m, dv=24,5 m 

1 c1,res=130,1 m/s (1) 1cos( / )bL cω =-0,9506 

2 c2,res=65,03 m/s= 
=234,11 km/h 

(1) 2cos( / )bL cω =0,8072 

3 c3,res=43,35 m/s (1) 3cos( / )bL cω =-0,5843 

4 c4,res=32,52 m/s (1) 4cos( / )bL cω =0,3034 

 
From Eq. (15) results: 

- The free-vibration response (Eq. (7) or (13)) results in the resonance response if the total number 
of moving loads is large enough. 

- The resonant-response amplitude decreases when the value of k increases. 
- The ratio /bL c of the span Lb to the velocity of the moving loads c expressively influences the 
response amplitude.  
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- The difference between phase angles in the dynamic components in Eq. (7) affects the 
phenomena of resonance and its cancellation. 
- The increase of the damping is an effective measure to reduce resonant –amplitude. 

     4.  CONCLUSIONS 
 An intensive vibration of the bridges similar to the resonance phenomenon for small and 

medium spans, especially at higher speeds over 160 km/h, can be discovered.  
The dynamic response of bridges of small and medium spans, is markedly influenced just 

composition of the periodic load of moving vehicles, due to the loading interval of vehicles, the rate 
of the moving loads, and the bridge length. For a bridge the total displacement response is 
predominated just by the driving frequency ( )

(1)
c

drω , the bridge frequency ( )
(1)

c ω , parameters /vd c  and  

/ .bL c  Dynamic deflections of the bridge 2

1 2 10

( 33) ( 2)
(1),( , ... ) ( / 2, )c a

P P P bw L t= + due to the series of load IC-cars 
(P1+P2+…PN) is defined superposition quasi-static and the dynamic components described by 
expressions (9), (10) and (12). For a small and medium span and for low speeds (c<160 km/h) the 
response do not lead to a significant increase, but at speeds c ≥ 160 km /h the dynamic amplifier 
factor 2

1 2

( 33) (a 2)
( , ........ )N

c
dyn P P P

= +Δ increases significantly in particular due to the dynamic components 

1 2

( ) (2)
(1),( , ,.....P ) ( / 2, )

N

c
P P bw L t . 

 The occurrence of resonant speeds ,i resc  results from parameters of the bridge and the train 

(distance axles of the train and the train speed). The resonant speeds ,i resc are reflected in a 
cumulative increase in dynamic response. With an increasing number of load forces n = 1,2, ... N, for 
M-forces moving along the bridge and  K-forces that have passed the beam, the deflection amplitude 

2

1 2 10

( 33) ( 2)
(1),( , ... ) ( / 2, )c a

P P P bw L t= + increase. They are particularly dangerous at high-speed trains and have an 
adverse effect on the degradation of the superstructure but also fatigue bridges.  
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