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Abstract 

This paper deals with numerical analysis and design of slander prismatic masonry beams loaded 
predominantly by axial force and bending moment in plane of the principal moment of inertia. Because 
of the material non-linearity, classical mathematical theory of slender columns cannot be applied for 
masonry elements, therefore the proposed method uses iterative non–linear calculation considering 
both material and geometrical non–linearity.  
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 1 INTRODUCTION 
Stability analysis is one of the most studied problems in the field of civil engineering. One 

reason is that the analysis is quite complex due to the many phenomena that need to be included. 
Recently proposed masonry structures are, considering their arrangement and resistance, usually 
designed as wall, which strongly emphasize the actual standards (especially [2]). If, however, the 
slender masonry element is to be designed, the method specified in [2] fails and leads to an 
underestimation of the impact of the stability problem. 

The goal of the current research is an analysis of the real behaviour of slender masonry columns 
under compression and development of simplified methods for their design and verification in 
combination with the applicable technical regulations. 

Accurate methods of modelling have to take into account nonlinear stress-strain diagram of 
masonry, changes in cross-section characteristics due to development of cracks and the geometric 
nonlinearity of the problem. At the early age only one non-linearity was consider in analysis, e.g. linear 
stress-strain diagram in compression with zero tensile strength. Nowadays the most common option is 
modelling using finite element method. Also the method of numerical integration - Runge-Kutta 
method - was used. 

The object of this article is to develop an MATLAB® algorithm that takes into account the 
above-mentioned phenomena, i.e. the material and geometric nonlinearity, including changing the 
center of gravity position due to the cracks development. The prismatic rod loaded in the plane of the 
main inertia is considered in the analysis. 

2 METHODS OF MODELLING 
2.1 Stability analysis of theoretically straight column with linear behaviour 

Euler’s critical load for theoretically straight column:  
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 Fcr=
π2EI
Lcr

2  (1) 

where: 
Fcr – is critical load, for which the column buckles [kN], 
EI – is bending stiffness [kN.m2] and Lcr – is critical length [m]. 
Critical length depends on boundary conditions - see Fig. 1. For masonry column only full restraint or 
free end are applicable. 

 
Fig. 1: Buckling shapes and critical lengths for various boundary conditions 

In algorithm the buckling shapes according to Fig. 1 are used in a form of prescribed initial shape of 
column (called initial imperfection), see below. 

2.2 Stability analysis of a beam with initial imperfections with linear behaviour 
Model geometry is based on the real layout and dimensions of the analyzed structure. A crucial 

input data is the maximum estimated value of the initial imperfection of the structure, which is defined 
by the principles set out in [2] by: 

 ݁଴=max( ௅ସହ଴ ; ௕ଷ଴ ;20 mm)  (2) 

where: ݁0 – maximal initial displacement [mm], 
b – is width of cross-section in the direction of buckling [mm] and 
L – is effective length, for beam column it is distance of supports in analyzed direction [m]. 

The initial shape of the structure (imperfection) is determined depending on the expected 
buckling shape of the structure. Given the nature of masonry as a material with relatively small strength 
the buckling shape is considered to be sinusoidal, or part of sine function in any "span" of column, i.e. 
between the supports. The functions used for the approximation of the initial shape of the structure are 
shown on Fig. 2. In the case of unequal length of "fields" approximation functions have to be selected 
individually for each field.  
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Fig. 2: Left: cantilever beam, middle: simply supported beam, right: the beam, which is supported 

on both sides by hinges and has a hinge support in the middle of height 

 In future, the number of initial imperfection shapes will be expanded so as to cover all the 
possibilities of structure geometry and design tolerances for the execution of building works according 
to the relevant technical regulations and standards. 
 
Way of solving the problem: 
Given the nature of the problem (above mentioned) solving is performed by method of inverse 
iterations. This method is explained in [7]. Solve the system of equations of the form: 

− ܭ)  .(ܩܭ  = ݎ  0  (3) 

where: 
K – is global stiffness matrix considering the boundary conditions (regular matrix) [kN/m], 
KG – is a geometric stiffness matrix and 
r – is a vector of displacement. 

Geometric stiffness matrix for a beam hinged on both sides is derived from a simple equilibrium 
conditions: 

 
Fig. 3: Derivation of geometric stiffness matrix for a beam hinged on both sides 



154 



























−

−

=

000000
010010
000000
000000
010010
000000

l
NKG

 

(4) 

where: 
N – is normal force in the beam [kN] and 
l – is a beam length.  
 Geometric stiffness matrix for a beam fixed on both sides: 
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(5) 

 
Equation (3) can be modified for the purpose of calculation to: 

ݎܭ  = ݂ + ௘݂௞௩  (6) 
where: 
f – is a load vector, and  
fekv  – is vector of equivalent load calculated as follows: 

 fekv=KGr  (7) 
In the (i+1)–th step of iteration we can calculate: 

௜ାଵݎܭ  = ݂ + ௜ீܭ  ௜  (8)ݎ
Where: i – is number of step. It is used in upper indices.  
Analysis uses following algorithm: 

଴ݎܭ  = ݂  (9) 
 

௜ାଵݎܭ  = ݂ + ௜ீܭ   ௜  (10)ݎ
 

 abs(ݎ௜ାଵ − (௜ݎ <   (11) ߝ
 

Equation (9) is solved first to obtain ݎ଴, from which ܰ଴,  ଴ீ are calculated. Then, from equationܭ
(10) we obtain ݎ௜ାଵ – vector of displacement of next step. This step is repeated until the criterion of 
equation (11) is fulfilled. In Matlab algorithm, error is chosen to be smaller than ߝ = 10ି଼݉. 
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3 MATERIAL PROPERTIES 

3.1 In general 
Masonry as a construction material is highly heterogeneous, consisting of separate masonry 

elements (bricks, blocks, etc.) and of joints filled with binder (mortar) usually of significantly lower 
strength and stiffness. Lower strength and stiffness of the mortar ensures uniform transfer of load 
between the masonry units, and even in places of local stress concentrations (i.e. where the asperity of 
the masonry elements occurs). High mortar strength and stiffness increase the strength of the entire 
composite material, but in areas of local asperities undesired crushing of masonry elements would 
occur, with consequent risk of failures. 

 

3.2 Masonry material model 
In practical terms, a discrete model of the structure, which takes into account the individual 

elements and their behaviour is unusable, particularly with regard to complicated determination of the 
input data, its own calculation and evaluation of the result. For the purpose of analysis and the structural 
design, the material is usually homogenized in an appropriate manner to preserve its properties in 
relation to the real behaviour of the structure modelled. 

Consistent approach is chosen in this study. Masonry is considered as a homogeneous or 
homogenized material. It is assumed that the dimensions of masonry elements and the joints between 
them do not significantly affect the distribution of stress in a masonry member. Evaluation of the 
structure is then carried out only in the weakest cross-section, i.e. in the joints of brickwork. It is 
assumed that if the structure fulfils verification in the joints, it fulfils verification in all other cross-
sections. 

The real stress-strain diagram of masonry, as can be seen in [3], shows a non-linear behaviour: 

 
Fig. 4: Stress-strain diagram of masonry – experiments and curves, which try to fit it 

The stress-strain diagrams were described for example Hendry and Khalaf [5], Augenti and 
Parisi [4] or Sargın [6]. 

 
Fig. 5: Stress-strain diagrams of masonry used for analysis of structure. Left: Serviceability limit 

state, right: Ultimate limit state 
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In this work it is assumed that the material reacts only on the pressure and the occurrence of 
tensile stress leads to cracking and its opening. If subsequently (e.g. in another load combination) 
tensile stress in cross-section vanishes, the cracks will close and cross-section acts as full again. 
Idealized stress-strain diagrams of such behaviour of the material for the individual limit states in 
accordance with [2] are shown on Fig. 5. Stress-strain diagrams are considered linear (SLS), or linearly-
plastic (ULS). 

 

 
Fig. 6: Changes of cross-section properties in dependence of load. Upper: Load position, lower: 

Corresponding stress distribution  

4 MECHANICAL MODELLING OF MASONRY COLUMNS 
The introduction of the above-described material model causes significant changes in geometry 

and stiffness of the structure being modelled in dependence on the applied load. The widening of the 
cracks in the masonry together with the geometrical non-linarites leads to non-linear solution of the 
whole problem. 

Principle of modelling of cross-sections and individual elements, changes in the stiffness and 
the geometry of the structure caused by the applied load are shown on Fig. 9. On the left picture may 
be seen, that tension in the part of cross-section makes this part excluded, see [1]. The cross-section 
gets smaller and center of gravity moves - ∆. The move of centroid has a positive effect on the stresses 
(the bending moment gets smaller) but cross-section getting smaller has negative effect on stresses, 
which increase. 

   
Fig. 7: Changes of cross-section and geometry of structure due to excluding the tensioned parts 

 The method of calculation (see also 2.2): 
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1) First step 
a. Dividing of the column to partial beam elements, 
b. Elastic analysis of vector r0 with full cross-section – see equation (9), 
c. Calculation of stresses in the cross-section of each element and determining, 

whether the excluding of the tensioned part of cross-section executes, or the cross-
section remains full, 

d. Filling of the matrix „prop“ – matrix of height, area and moment of inertia of cross-
section in each step of calculation. 

2)  Second and every other step 
a. Calculation of ∆ - move of cross-section of each element (from matrix „prop“ from 

last step), 
b. Calculation of  matrix K with the new cross-section properties and changed 

geometry, 
c. Calculation of  matrix KG – see chapter 2.2, 
d. Calculation of  vector r  with changed geometry and new matrix K, 
e. Calculation of stresses in the new cross-section and determining, whether the new 

cross-section gets even smaller or it grows bigger again, 
f. Filling of the matrix „prop“, 
g. Checking the condition of convergence – see equation (11).  

5 EXAMPLE 1 
Column hinged on both sides with square cross-section BxH=0.4x0.4 m with height 4.2 m was 

chosen. Its initial imperfect shape was chosen according to (2), initially inclined right. Axial load on 
the column was 770 kN and bending moments at both ends 39 kNm. These moments were chosen so, 
that it enlarge moment from imperfection. The final deflection and int. forces can be seen on Fig. 10. 

 
Fig. 8: Left top - final shape and lateral deflection (see also Fig. 11), right top – lateral deflection 
of the middle of the column in each step of calculation, left bottom – shear force in the final step, 
right bottom – bending moment in the final step. All this is for the case, that cross-section reduces 

and the calculation converge to equilibrium 
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Fig. 9: Final shape of center of gravity and lateral deflection of this structure, non-proportional plot. It 

is for the case, that cross-section reduces and the calculation converge to equilibrium 

 
Fig. 10: Left – final height of cross-section at the final step, right – bending moment in the middle of 
height of the column in each step of calculation. It is for the case, that cross-section reduces and the 

calculation converge to equilibrium 

 The load in above example was chosen so that the material non-linearity will show up. If the load 
is higher than critical, the lateral deflection grows excessively large. In such a case, the calculation 
stops after few steps: 

 
Fig. 11: Lateral deflection of the middle of the column in each step of calculation. It is for the 

case, that the cross-section reduces and the calculation didn’t converge 

 The last possibility is, that the column cross-section doesn’t reduce, because no tension occurred. 
So the calculation is carried out only with the assumption of linear behaviour of material.  
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Fig. 12: Left top - final shape and lateral deflection, right top – lateral deflection of the middle of 
the column in each step of calculation, left bottom – shear force in the final step, right bottom – 

bending moment in the final step. All this is for the case, that cross-section doesn’t reduce and the 
calculation converge to equilibrium 

6 EXAMPLE 2 
As an example, column, which rotations are fixed at both sides with square cross-section 

BxH=0.4x0.4 m with height 8.2 m was chosen. Its initial imperfect shape was chosen 0.18 m, 
initially inclined right. Axial load on the column was 770 kN. The final deformation and internal 
forces can be seen on Fig. 10. 

 
Fig. 15: Left top - final shape and lateral deflection, non-proportional plot, right top – lateral deflection 
of the middle of the column in each step of calculation, left bottom – shear force in the final step, right 
bottom – bending moment in the final step. All this is for the case, that cross-section reduces and the 
calculation converge to equilibrium 



160 

    
Fig. 16: Left - final height of cross-section at the final step, right - final shape of the column – without 

excluded tensioned parts of cross-section 
 

7 CONCLUSIONS 
 An algorithm which can solve non-linear stability analysis of slender columns loaded in the plane 
of the main moment of inertia was implemented in the program MATLAB®. The program allows to 
analyze these structures till its failure. In the future extension of algorithm to columns loaded in general 
plane is assumed to be made. The authors also plan to extend the algorithm to general structures, not 
only columns under compression. 
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