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Abstract 

The aim of this study is to compare two available numerical tools for solving of partial 
differential equations for the optimal design of structures. In the past years numerous methods were 
developed for topology optimization, from these we have adopted the optimality criteria (OC) 
approach. The main idea is that we state the optimal conditions, that the minimizer has to fulfil at the 
end of an iterative proves. This method however is not a general one, only advantageous in the case 
of separable problems, but comes with fast speed, easy programming, and a relative insensitivity of 
computational time to the number of variables. In the paper we suggest a new method for the 
elimination of a numerical error, the so called ‘checkerboard pattern’. In the presented examples we 
applied one loading case and an elastic material behaviour. The cost function is the net weight of the 
structure and upper bound of the compliance is set as the optimality constraint. 
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 1 INTRODUCTION 
The definition of a structure is defined by J.E. Gordon as “any assemblage of materials which 

is intended to sustain loads.” The aim of topology optimization is to find the structure, which fulfils 
these criteria in the best possible way. 

 
Fig. 1: The programming problem 
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For this to happen, in the first place we have to define what we mean by being the “best”. 
Assuming a correlation with economic design, we consider a structure to be optimal, if it produces 
the lowest net weight. The function which is to be minimized is called as an objective function. 
This function assigns a scalar to every design of a structure, where a smaller value means better, 
hence the task is to find the minimizer of it. For the problem to be well defined, we need to state 
restrictions, which exclude the trivial solution. It is commonly used to achieve this by setting an 
upper bound on the compliance of the structure. This is no other as the external work of the static 
loads, which in the case of a linearly elastic material equals the double of the strain energy. It is 
foreseeable by multiplying the statical state equation of a FEM model by the vector of nodal 
unknowns ሼuሽ୘: 
 ሼuሽ୘[K]ሼuሽ = ሼuሽ୘ሼfሽ.  (1) 

 
In this equation ሼuሽ and ሼfሽ denotes the vector of nodal unknowns and forces, respectively, [K] 

is the global stiffness matrix of the system. From now on, the expression on the left will be denoted 
with C. The design is described with the design variables, which usually are some thickness, or other 
geometrical property of the structure. A state variable is a function or vector expression, representing 
the response of the structure to the given load. Further restrictions can be stated to the design or 
the state variables. In the scope of the present paper, the discussed problems could be mathematically 
stated in the following form:  

 
 minሼ୳ሽ ܸ(ሼxሽ) 

ሼuሽ୘[K]ሼuሽ   ݋ݐ ݐ݆ܾܿ݁ݑݏ  <  ଴,  (2)ܥ
             ܽ݊݀    [K]ሼuሽ = ሼfሽ; 

 
 

where ܸ(ሼxሽ) is the objectie function of the design variables ሼxሽ, ܥ଴ is the mentioned upper bound on 
the compliance. The last equation is the state equation of the structure, which, according to the 
previously mentioned, equals to a constraint on the state variables. 

The stated problem is a constrained programming one. This can be transformed to 
an unconstrained one using penalty functions, or more often the method of Lagrange multipliers. 
The latter one can only be used, if the constraints are written in the form of equality. With the 
expanded version of this method, one can state the general criteria, which the design variables have to 
satisfy in the minimum point of the cost function these are called as the Karush-Kuhn-Tucker (KKT) 
conditions. There are several methods to solve the programming problem and find the minimizer, 
among those, which solve the KKT conditions directly, are referred as optimality criteria methods 
[1][2][3]. 

In the next chapters we will investigate the possibilities in this method, in the meaning of the 
applied numerical tool for stress analysis. Since the two major numerical techniques for solving 
partial differential equations (PDEs) in structural engineering is the finite element method (FEM) and 
the finite strip method (FSM), these will be the subject of comparison. We adopt the assumptions of 
the Mindlin-Reissner plate theory. 

It is also important to highlight the question of convexity. A general programming problem is 
said to be convex, if the both the cost function and the functions describing the constraints are 
convex. This concept comes with the favourable property that the local and global minimizer 
coincides. The question of convexity, however, is a complicated task, but has proven for the case 
of (2). The details of the proof can be found in the literature [4]. 

In the forthcoming chapters we assume a solid understanding of the introductory concepts, and 
the two numerical tools, as mentioned above. 
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 2 THE FINITE ELEMENT AND THE FINITE STRIP METHOD 
Due to being widespread in many field of engineering, we don’t introduce the theoretical 

aspects of the FEM, but focusing instead on the FSM. 
Although the most successful and current numerical tool of the past decades for solving 

engineering problems is the FEM, we share the view that one has to take every opportunity, which 
allows the theoretical ideas to take place. This gives rise to the application of FSM, as a semi-analytic 
modification of the FEM. The foundations of the theory were laid down by Cheung in 1960 by 
combining the usual finitization technique with analytic results. He realised, that in certain cases, 
we can exploit the specialties of the geometry, which allows us to make some simplifications. 
A few examples of structures with such beneficial geometrical properties are illustrated on Figure 2. 

 
Fig. 2: Structures with beneficial geometrical properties for the FSM 

So, the main difference lies in the way of finitization. The two different approaches are 
illustrated on Figure 3. 

 
Fig. 3: Finitization of the geometry with FEM (left) and FSM (right) 

The big advantage of FSM is that if the cross section of the structure is constant, the number 
of unknowns is insensitive to the span length. This property is also fruitful, when creating a mesh 
generator, since the discretization happens in lower dimension, even in the case of a curved axis. 

 
Fig. 4: Sign convention for displacements in a tronco-conical shell 
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For a more general discussion, the expressions are formulated in a tronco-conical coordinate 
system, shown in Figure 4. Then, the simpler geometries can be deduced as a particular case of 
this formulation. 

The displacement field at any point of the shell can be expressed as: 
,ݏ)ݑ  ,ߠ ݊) = ,ݏ)଴ݑ (ߠ + ݊ ,ݏ)௦ߴ   ,(ߠ
,ݏ)ݒ  ,ߠ ݊) = ,ݏ)଴ݒ (ߠ + ,ݏ)௧ߴ݊  (3)   ,(ߠ
,ݏ)ݓ  ,ߠ ݊) ≅ ,ݏ)଴ݓ  ,(ߠ
where ݒ ,ݑ and ݓ are the displacements of a typical point in the ݐ ,ݏ and ݊ directions, while ߴ௦ and ߴ௧ 
are the normal rotations contained in the planes ݊ݏ and ݊ݐ. The elements of the small strain tensor 
are: 

௦ߝ  = డ௨డ௦,  
௧ߝ  = ଵ௥  డ௩డణ + ௨௥  sin ߶ − ௪ோ೟,  
௦௧ߛ  = ଵ௥  డ௨డణ + డ௩డ௦ − ௩௥  sin ߶ − ௡ோ೟  డ௩డ௦ ,  (4) 

௦௡ߛ  = ௦ߴ + డ௪డ௦ ,  
௧௡ߛ  = ௧ߴ + ଵ௥  డ௪డణ + ௩ோ೟. 

The interpolation model for the displacement field has to be choosen so, that the trigonometric 
terms must satisfy the prescribed boundary conditions. In our case the investigation is restricted to 
the case of the classical FSM, where simply supported boundary conditions are adopted at the two 
ends of a strip element. Therefore: 

,ݏ)ݑ  (ߠ = ∑ ௡௟ୀଵ(ݏ)଴௟ݑ ∙ sin ቀ௟గఈ ቁߠ = ∑ ∑ ௜ܰ(ݏ) ∙ ଴௜௟௡೐௜ୀଵ௡௟ୀଵݑ ∙ sin ቀ௟గఈ   ,ቁߠ
,ݏ)ݒ  (ߠ = ∑ ௡௟ୀଵ(ݏ)଴௟ݒ ∙ sin ቀ௟గఈ ቁߠ = ∑ ∑ ௜ܰ(ݏ) ∙ ଴௜௟௡೐௜ୀଵ௡௟ୀଵݒ ∙ sin ቀ௟గఈ ቁߠ ,  
,ݏ)ݓ  (ߠ = ∑ ௡௟ୀଵ(ݏ)଴௟ݓ ∙ sin ቀ௟గఈ ቁߠ = ∑ ∑ ௜ܰ(ݏ) ∙ ଴௜௟௡೐௜ୀଵ௡௟ୀଵݓ ∙ sin ቀ௟గఈ  ቁ,   (5)ߠ

,ݏ)௦ߴ  (ߠ = ∑ ௡௟ୀଵ(ݏ)௦௟ߴ ∙ sin ቀ௟గఈ ቁߠ = ∑ ∑ ௜ܰ(ݏ) ∙ ௦௜௟௡೐௜ୀଵ௡௟ୀଵߴ ∙ sin ቀ௟గఈ   ,ቁߠ
,ݏ)௧ߴ  (ߠ = ∑ ௡௟ୀଵ(ݏ)௧௟ߴ ∙ cos ቀ௟గఈ ቁߠ = ∑ ∑ ௜ܰ(ݏ) ∙ ௧௜௟௡೐௜ୀଵ௡௟ୀଵߴ ∙ cos ቀ௟గఈ ቁߠ .  

Here ݊ denotes the number of harmonic terms, ݊௘ the number of nodal lines per element and ߙ 
is the curved coordinate. The important thing to note here is that in a FSM model, the nodal 
amplitudes attached to a particular harmonic term take the role of nodal unknowns, and so the state 
variables. From the expressions of (3), (4) and (5), one can deduce the expression of the potential 
energy of the structure. Finally, the discretized equilibrium equation can be obtained by minimizing 
the total potential energy, with respect to all nodal amplitudes. After carrying out this, we will come 
to a set of linear equations, which can be best represented in matrix form. Therefore: 

 ൦[ܭଵଵ]
[0] [ଶଶܭ] ⋱ [0]

൪[௡௡ܭ] ൞ሼܽଵሽሼܽଶሽ⋮ሼܽ௡ሽൢ = ۔ە
ሼ݂ଵሽሼ݂ଶሽ⋮ሼ݂௡ሽۙۘۓ

ۗ.  (6) 

Thanks to the special case of boundary conditions and the orthogonal property of 
the trigonometric functions, the system matrix has a block-diagonal structure, which allows us to 
solve the equations for each harmonic separately. After all it can be diagnosed, that the FSM can be 
economically competitive with the FEM in the case of special boundary conditions, or if the span 
length is considerably large.  
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 3 THE OPTIMALITY CRITERIA METHOD (OC) 
As previously mentioned, the sufficient criteria for a design to be a local optimizer are called 

KKT conditions and can be regarded as a generalisation of the Lagrange multiplier technique. 
A cardinal point is the selection of the design variables. For plated structures the thickness can play 
the role, but more often an artificial material model is adopted in the following form: 
(ߩ)ܧ  = ߩ ∙  .଴ܧ

Here ߩ is an artificial density, taking values between 0 and 1, ܧ଴ is the Young’s modulus. 
Thus we can preamble a parameter, whereby the stiffness matrix shows linear dependence. This type 
of formulation is called a SIMP method. In the special case, when the stiffness matrix shows linear 
dependence from another parameter, that can be chosen as the design variable as well, but this is 
valid only for certain cases. In the case of nonlinear dependency, the convergence of the shortly 
introduced method cannot be generally guaranteed. 

Our goal is to minimize the cost function, so the volume of the structure. We define two 
constraints on the state variables. The first one is to satisfy the discretized equilibrium equations, 
the second one is the already introduced upper bound on the compliance of the structure. This bound 
is practically the multiple value of the compliance of the initial design, and is denoted later by ܥ଴. 
The optimization problem in the case of 2D problems and using the FEM as the analysis tool:  

 minఘ (ߩ)ܸ = ∑ ௜ே௜ୀଵܣ ∙ ௜ݐ ∙ ௜ߩ భ೛, 

ሼuሽ୘[K]ሼuሽ     ݋ݐ ݐ݆ܾܿ݁ݑݏ  ≤  ଴,  (7)ܥ
 ܽ݊݀          [K]ሼuሽ = ሼfሽ. 

The ݌ parameter in the cost function fastens the interation, its value is recommended between 
1 and 3. It has an effect of obtaining a 0/1 type density distribution at the end of the iteration process, 
which is fundamental, since intermediate values make no real sense. The last equation in (7) is 
the equilibrium equation, which will be handled separately, as an inner step of an iteration cycle. 
By writing the Lagrange function, we can transform the problem to the minimization of 
an unconstrained one. 
,ሽߩሼ)ܮ  (ߣ = (ߩ)ܸ − ߣ ∙ (ሼuሽ୘[K]ሼuሽ −  ଴)  (8)ܥ

Here the original restriction on the compliance is written as equality. Without the details we 
mention, that the equivalence of the two formulations could be admitted by the use of slack variables. 
From now on we are searching for the minimizer of (8), which is the function of the design variables ሼߩሽ and the Lagrange multiplicator ߣ. Summarizing, the KKT conditions state that for a design to be 
a minimizer has to satisfy the followings: 
 ∇ሼఘሽ ܮ(ሼߩሽ, (ߣ = 0,  
ߣ  ≥ 0,  
 ሼuሽ௜୘[K]௜ሼuሽ௜ ≤  ଴,  (9)ܥ
൫ሼuሽ௜୘[K]௜ሼuሽ௜൯ߣ  = 0, 
with the comment, that for these conditions to be sufficient, it is necessary that the Hessian of the cost 
function is positive definite. Another remark is that the case ߣ = 0 means, that the minimizer 
coincides with that of the original cost function of (2) without any constraints, so it can be excluded. 
From the rest, one can obtain closed formulas for the design variables and ߣ: 

௜ߩ  = ቀ௣∙ఒ∙ோ೔஺೔∙௧೔ ቁ ೛భశ೛ ߣ    , = ቀ ஼ಲ஼బି஼ುቁభశ೛೛ ,  (10), (11) 

where  
 ܴ௜ =  ௜ሼuሽ௜୘[K]௜ሼuሽ௜ and  (12)ߩ
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஺ܥ  = ∑ ቈቀ஺೔∙௧೔௣ ቁ ೛భశ೛ ∙ ܴ௜ భభశ೛቉௔௖௧௜௩௘ ௉ܥ   , = ∑ ோ೔ఘ೔௣௔௦௦௜௩௘ .  (13) 

A strip is active, if the attached design variable has an intermediate value, otherwise it is 
passive. The details of the deduction of (12) and (13) can be found in [10], while the steps of one 
iteration cycle is illustrated on the flowchart of Figure 5. 

 

 
Fig. 5: SIMP flowchart 

If we use the FSM for the calculation of the state variables, the problem of (7) modifies to 

 minఘ (ߩ)ܸ = ∑ ௜ே௜ୀଵܣ ∙ ௜ݐ ∙ ௜ߩ భ೛ , 

ሼaሽ୘[K]ሼaሽ     ݋ݐ ݐ݆ܾܿ݁ݑݏ  ≤  ଴,  (14)ܥ
 ܽ݊݀          [K]ሼaሽ = ሼfሽ, 
as the nodal amplitudes take the role of state variables. 
 

 4 OPTIMIZING WITH THE FINITE ELEMENT METHOD 
The available literature is sufficiently rich in result obtained with a SIMP method using 

the FEM, so just a few remarks is to be added here. 
The following examples are shown on a rectangular sheet with side length of 8 and 6 meters 

in x and y directions respectively. A fix support is placed on the left edge, the load is a concentrated 
one of 100 kN pointing downwards, positioned in the top right corner. The material parameters are 

update ߣ with (11) 

 update the design variables with (10)  

update the state variables with  
FEM/FSM 

- initialization of the design 
variables and the  ߣ  

- calculation of state variables 
with  FEM/FSM  

- calculation of ܥ଴ upper 
bound 

stop criteria 
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equal to that of a C12/15 concrete (E=2600 MPa, ν=0.2). The optimal topology of this setup is shown 
on Figure 6 with different elements. 

 
Fig. 6: Optimal results using a four nodded (left) and a special finite element  

with drilling degree of freedom (right) 

At the picture on the left, one can see the so called ‘checkerboard pattern’, which is caused 
by the incorrect approximation of the FEM. Solutions to this problem are known. One of them is 
the application of shape functions of a higher order, but it comes with a higher number of variables. 
The most popular way to avoid this error is nowadays the application of filters of different types. 
The common property of these is that they make subsequent amendments on the pattern at every 
iteration step. In this article we suggest another way of thinking by adding a rotational nodal freedom 
around the z axis, making the model able to take into account the infinitesimal contact surface 
between elements in the case of a checkerboard pattern. The implementation of an extra rotational 
degree of freedom around the third axis is not rare at plate or shell problems, but their only purpose is 
to facilitate the transformation from local to global, when adjacent nodes are not coplanar, without 
taking any real part in the formulation of the stiffness. 

From the models containing a drilling degree of freedom we adopted the version educed 
by Ibrahimbegovic [5], which is based on the variational formulation of Hughes and Brezzi [6], 
combined with an Allman-type interpolation field for in-plane displacements and the standard 
bilinear independent normal rotation field [5]. The latter one has the following form: 
௭ߴ  = ∑ ௜ܰ(ߦ, (ߟ ௭௜ସ௜ୀଵߴ ,  (15) 
and the Allman-model for the interpolation of the in plane displacement fields: 

 ሼuሽ = ቄuݒቅ = ∑ ௜ܰ(ߦ, (ߟ ቄu௜ݒ௜ቅସ௜ୀଵ + ଵ଼ ∑ ௞ܰ(ߦ, )(ߟ ௭௝ߴ − (௭௜ߴ ቄy௜௝ݔ௜௝ቅ௞଼ୀହ ,  (16) 

where 
௜௝ݔ  = ௝ݔ − ,௜ݔ ௜௝ݕ = ௝ݕ −  ௜,  (17)ݕ

 ௜ܰ(ߦ, (ߟ = ଵସ (1 + 1)(ߦ௜ߦ + ݅    (ߟ௜ߟ = 1,2,3,4,  (18) 

 ௞ܰ(ߦ, (ߟ = ଵଶ (1 − ଶ)(1ߦ + ݇   (ߟ௞ߟ = 5,7,  (19) 

 ௞ܰ(ߦ, (ߟ = ଵଶ (1 − ଶ)(1ߟ + ݇   (ߦ௞ߦ = 6,8,  (20) 
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and the ordered triplets (k, i, j) are defined by (5, 1, 2), (6, 2, 3), (7, 3, 4) and (8, 4, 1) in the case 
of the standard numbering scheme of element nodes.  According to the variational formulation 
of Hughes Brezzi, the element stiffness matrix can be composed as: 

[௘ܭ]  = ௘௠൧ܭൣ + ൣ ఊܲ൧ = ׬ ஐ்[௘ܤ] Ω݀[௘ܤ][௠ܦ] + ߛ ׬ ሼܾሽ்ሼbሽஐ ݀Ω.  (21) 
Here [ܦ௠] is the material stiffness tensor of the sheet, [ܤ௘] is the geometrical matrix of the Allman-
type model, ߛ penalty parameter, and ሼbሽ is related to the skew-symmetric part of the strain tensor, 
in details: 

[௘ܤ]  = ቎ ௜ܰ,௫ 0 ௜,௫0ݔܰ ௜ܰ,௬ ௜,௬௜ܰ,௬ݕܰ ௜ܰ,௫ ௜,௬ݔܰ +  ௜,௫቏,  (22)ݕܰ

 ሼbሽ் = ۔ۖەۖ
ۓ − ଵଶ ௜ܰ,௬ଵଶ ௜ܰ,௫ଵଵ଺ ൫−y௜௝ ௟ܰ,௬ + y௜௞ܰ௠,௬ + x௜௝ ௟ܰ,௫ − x௜௞ܰ௠,௫൯ − ௜ܰۙۘۖ

ۖۗ
 , (23) 

where 

௜ݔܰ  = ଵ଼ ൫y௜௝ ௟ܰ − y௜௞ܰ௠൯,  (24) 

௜ݕܰ  = ଵ଼ ൫x௜௝ ௟ܰ − x௜௞ܰ௠൯.  (25) 

In expressions (24) and (25) the indices i, j and k are ordered triplets, which can be deduced 
from the interpolation model and the node numbering of the element. The value of the penalty 
parameter is problem dependent, usually to match the bounds ܩ/ߛ = 1 and ܩ/ߛ = 10000. According 
to [7], [8] and [9] a value of ܩ (shear modulus) is taken. 

 

 5 OPTIMIZING WITH THE FINITE STRIP METHOD 
Comparing (7) and (14) it can be seen, that if using the FEM or the FSM, there is 

no difference in the mathematical formulation, but in the interpretation of the results, as explained 
in this chapter. To obtain a topology optimization algorithm with the FSM we have to ensure that 
the target domain is well discretized and that the design variables can take the zero value. 

The results are illustrated on a girder bridge with a box section, having a cross section with 
overall dimensions of 3x1 meters and a span length of 8 meters. The bottom flange is 1.5 meters wide 
and the thickness is 10 cm in general. The material parameters are equal to that of a C12/15 concrete 
(E=2600 MPa, ν=0.2). Two concentrated forces are applied with a value of -100 kN in vertical 
direction, positioned at the midspan, as show on Figure 7. The boundary conditions are simply 
supported hinges at the strip ends. 

 
Fig. 7: Setup of a box girder bridge 
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The design space, which is illustrated on the left of Figure 8, was defined from practical 
viewpoints. The strips with thick line are kept on a constant density value of 1, while some strips are 
excluded from the feasible domain. The optimized design can be seen on the right of the same figure. 
It gives a valuable insight to the optimal shape of the structure, but is not suitable for design. 

 
Fig. 8: Optimized section of a box girder bridge 

 6 CONCLUSION 
The results obtained with a FEM based SIMP method is well suited for design, and the results 

are well known. Within this topic we suggested an alternative method to avoid a specific numerical 
error, which has proven to be effective yet. 

Despite the general applicability of FEM, and in the case of some regularity in the geometry, 
the system variables can be reduced significantly when using the FSM instead. This semi-analytic 
method had just partly lived up to expectations. The restriction of the classical finite strip 
formulations to the boundary conditions is already resolved, but the results are hard to interpret and 
utilize in the design of structures. 
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