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Abstract 

The subject of this paper is to describe some of the aspects manifesting in the use of the elasto-
plastic material model library multiPlas, which was developed to support non-linear computations in 
the ANSYS system. The text focuses on the analysis of numerical simulations of a virtual tension test 
in several case studies, thereby the text endeavours to describe the problems connected with 
modelling non-linear behaviour of concrete in a tensile area. 
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 1 INTRODUCTION 
The application of a non-linear description of the construction material behaviour at numerical 

simulations represents bringing mathematical modelling methods nearer to the real actions of 
structures. The finite element method (FEM), which is implemented to a number of commercial and 
academic software products (e.g. ANSYS [1], Atena [2]), is currently widely used for numerical 
simulations calculating on an effect of material as well as geometric non-linearity. Examples of 
applications of robust computational systems based on the finite elements for solving material non-
linear problems are documented in a publication [3]. Other publications in professional journals and 
conference paper proceedings [4,5,6] are an evidence that the area of the description of quasi-brittle 
material structure behaviour in particular is a sphere of interest of many scientific workplaces and at 
the same time the mentioned points at issue have not been fully concluded so far. 

One of the crucial problems of the constitutive relation definition for the concrete is the 
different behaviour under the tensile and compressive stress. The main difference lies in different 
proportions of the compressive and tensile strength that reaches significantly lower values. 
Considering the mentioned differences in concrete structure behaviour under different loads, the 
points at issue of the description of non-linear quasi-brittle material behaviour is connected with 
several theoretical areas: the theory of plasticity, the theory of linear and non-linear fracture 
mechanics and the damage theory [7]. This concept of so-called multi-surface plasticity is the essence 
of the material models in the multiPlas library [8] that was created as a supportive database for 
material non-linear computations in the ANSYS computational system. The level of the robustness of 
the mentioned combination of computational tools enables to solve a really varied scale of non-linear 
problems, but still some specific consequences can arise at these simulations caused by the 
application of the finite element method and assumptions of the applied theories. The dependence to 
the finite elements size (spurious mesh sensitivity), problems of strain localization and the 
idealization of boundary conditions can be included among these negative aspects. Even though the 
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mentioned tools have the means intended for elimination of these defects, we can meet with their 
incorrect functionality in some cases.  

The existence of often a large class of physically-mechanical and empirical parameters whose 
values are not systematized creates a significant problem connected with the application of the non-
linear material models for the concrete, but also for other materials. Some of these parameters even 
do not have the physics and serve for instance as a stabilizing agent of the solution. One of the 
possibilities how to determine given parameters is the application of inverse identification methods 
among which exercises of artificial neural networks and optimization techniques can be included. 
However, the application of these methods requires a deep knowledge of the non-linear solution 
problems, the stability and the robustness of the solver as well as securing as smooth convergence as 
possible. The task of the presented text is to explain the aspects occurring at the solution of the 
material non-linear problems with the aid of the multiPlas library through several partial case studies 
whose successful solution has the potential to help at further applications of this material models 
library. 

 2 PROBLEM DEFINITION 
To demonstrate the selected aspects occurring at the numerical investigation of the non-linear 

behaviour of the concrete, an elementary problem of the simple tension representing a virtual tension 
test on a concrete sample was chosen. The concrete sample of the C20/25 class in a shape of a beam 
of nominal dimensions: length l = 200 mm; height h = 100 mm; width b = 100 mm was considered 
for these purposes. This sample was exposed to tensile load on the opposites sides of the dimensions 
100 x 100 mm. The form of the intended sample and the load scheme can be seen in Fig.1. 

 
Fig. 1: Load scheme 

The given task type was chosen with respect to its simplicity and the possibility to apply 
analytical methods to verify the results obtained by the non-linear solution with the use of the 
adequate material models. The dimensions of the considered sample further enabled to check a 
possible occurrence of the negative relation of the solution on the size of the finite element mesh. The 
selected type of the task also enabled to carry out computations at different levels of the complexness 
using both 3-D SOLID185 eight-node elements and plane PLANE182 four-node elements for the 
problems of the plane state of stress. 
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As for the load, the deformation load that appears to be more stable and better to converge at 

the computational solution was considered. The total load size was dtot = 0.0001 m. During the virtual 
tension test it was considered as the horizontal displacement of a half size of d = 0.00005 m at the 
both ends of the body. On the basis of the elementary knowledge of the task and material geometry, a 
very simple analytic solution was carried out, whose purpose was to verify the subsequent numerical 
simulations. The above-mentioned values of the horizontal final deformations were with regard to the 
defect of a descending branch of the work diagram approximately 10 times greater than the 
deformation at reaching the material ultimate strength. 

 2.1 Simplified Analytic Solution 
The simplified analytic solution was carried out under the assumptions of the linear elasticity 

theory. The purpose of the given solution was to determine the size of the introduced deformation 
dlin,max at reaching the material tensile strength σt,max for which the following relation applies:   
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where: 
Ec  – is the Young's modulus of elasticity [Pa], 
l – is the length of the considered sample [m], 
σt,max – is the ultimate tensile strength [Pa]  

 
Considering the fact that this was a testing study the value of the modulus of elasticity and the 

concrete tensile strength was taken from the existing Czech technical standard ČSN EN 1992-1-1 [9]. 
For the considered C20/25 concrete class the normative value Ec = 30 GPa was applied and the 
tensile strength value was considered of the proportions of σt,max = 2.4 MPa. By substituting into the 
equation (1) the value of the tensile deformation at reaching the material ultimate strength was thus 
gained: 
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On the basis of the determined deformation dlin,max the maximum intensity of the tensile force 

Ft,max for the given tensile deformation load dtot was determined. The following equation was applied 
for the computation of the tensile force: 
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After adjustment and substitution to the equation (3) the value of the maximum tensile force 

Ft,max was determined:  
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All the above-mentioned and calculated basic values of the F-d diagram of the load test are 

schematically indicated in the graph - see Fig. 2. 
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Fig. 2: Basic values of the F-d diagram of the load test 

 3 NON-LINEAR NUMERICAL ANALYSIS AND ITS SPECIFIC ASPECTS 
For the virtual load test, which has been dealt with in the previous paragraphs, 4 sets of non-

linear numerical simulations in total were carried out in the ANSYS computational system. The non-
linear Menétrey-Willam material model from the multiPlas library was applied in all the cases. The 
effect of idealization of boundary conditions, the effect of the finite element mesh size, and the effect 
of a setting of some internal variables at the level of a final element was monitored within these case 
studies executed in the 2-D (3 sets) and in the 3-D environment (1 set). 

 3.1 Computational Model Geometry 
The computational model creation including the setting of the material model, the application 

of boundary conditions, the setting and initialization of the solver and finally also the export of the 
resulting data indispensable for the F-d diagram creation were always performed within 1 
programmed batch. The computational model geometry itself was with respect to its simplicity 
created in a hierarchical manner from points through the lines to the surfaces within the mentioned 
batch. In case of the 3-D alternative with the final elements of the brick type the above-mentioned 
surfaces were extruded in addition and thanks to this the body of the given size was created. The 
resulting geometric object was subsequently covered with the finite element mesh with the 
appropriate length of the side as can be seen in the examples in Fig.3. 
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Fig. 3: Computational models with the mesh from PLANE182 and SOLID185 elements 
(element size – 5 mm) 

The following cases of the finite element mesh dimensions were considered within the 
executed studies: 1 mm, 2 mm, 5 mm, 10 mm and 20 mm. However, this planning failed to be kept 
rigorously, as the requirements on the computational time in the case of the 1 mm alternative with the 
SOLID185 elements were enormous. 

 3.2 Material Model Description and Setting 
The applied non-linear Menétrey-Willam [10] material model is based on the Willam-Warnke 

[11] yield surface, which is contrary to the Drucker-Prager surface the function of not only the first 
and the second, but also of the third invariant of the stress deviator (so-called Lode angle). Softening 
the corners of the deviatoric planes of the yield surface that, moreover, do not have a constant 
distance from the hydrostatic axis in the Haigh-Westergaard space [8] is achieved by this adjustment. 
This aspect is one of the basic characteristic features of the multi-surface plasticity concept that is 
currently applied at the multiPlas library models. Comparison of the deviatoric planes of the yield 
surface is shown in Fig. 4.  

 
Fig. 4: Comparison of the deviatoric planes of the yield surface 

The Menétrey-Willam material model belongs to a group of models that cannot cover the 
effect of strain rate on the state of stress. Irreversible strains arise at reaching the yield surface, while 
the disintegration of the total strain vector εtot into an elastic εel and plastic εpl part [8] is assumed. 
 

pleltot εεε +=  (3) 

From the point of view of the finite element method application the selected material model 
uses the smeared cracks concept. To solve the given problem an alternative using the softening 
function based on the dissipation of the specific fracture energy Gf was selected. In relation to the 
necessity to eliminate the negative relation of the solution on the size of the finite element mesh the 
non-linear Menétrey-Willam model uses Bažant's Crack Band concept [12]. 

To achieve corresponding non-linear functioning of this model, 10 material parameters in total 
whose description and values selected in the case studies are summarized in Table 1 need to be pre-
defined. These parameters were chosen purely at random for the purpose of the simplicity of the 
executed study and thus do not have any connection to the actual parameters of the selected material. 
Their actual values could be obtained using the inverse identification method from the data 
originating from the real experiments, as indicated in the introductory passage.  

Besides the above-mentioned non-linear parameters, linear-elastic parameters were necessary 
to be preset as well as required by the ANSYS computational system. With regard to this fact, the 
modulus of elasticity of the size of Ec = 30 GPa and the Poisson's ratio υ = 0.2 were set. In addition to 
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these parameters having the character of the physically-mechanical qualities of the used material, also 
other state and computational variable whose detailed description can be found in the quoted 
literature [8] had to be preset. 
Tab. 1: Material parameters – description and values selected in the case studies 

Parameter Unit Value Description 
σc,max [Pa] 30.0·106 Uniaxial ultimate compressive strength 
σt,max [Pa] 2.4·106 Uniaxial ultimate tensile strength 
σb [Pa] 36.0·106 Biaxial compressive strength  
Ψ [ ͦ ] 10.0 Dilatancy angle 
κcm [-] 3.0·10-4 Plastic strain corresponding to the maximum load 

Ωci [-] 0.75 Relative stress level at start of non-linear hardening 
in compression 

Ωcr [-] 0.10 Residual relative stress level in compression 
Gfc [Nm/m2] 1000.0 Specific fracture energy in compression 
Gft  [Nm/m2] 100.0 Specific fracture energy in tension 
Ωtr [-] 0.05 Residual relative stress level in tension 

 3.3 Boundary Conditions 
One of the aspects having a direct effect on the quality and solvability at all are the boundary 

conditions. At idealization of the solved problem in the ANSYS computational system the selected 
deformation load was set as the horizontal displacement on the boundary nodes of the mesh. In the 
first case study the zero vertical displacement was further specified on the boundary nodes on the 
right only to ensure a correct support of the model. However, considering the results this support 
appeared to be incorrect, which resulted in a change of the boundary conditions in the second case 
study. In this set of the computations, the zero vertical displacement was specified on the boundary 
nodes on the both sides of the sample. This arrangement of the boundary conditions had a positive 
effect on the quality of the results and so it was applied on the computational models in the third and 
fourth case study. The mentioned fourth and the last case study was already executed from the 3-D 
solid elements SOLID185 and therefore it requested a support in the horizontal and transverse 
direction. Considering the above-mentioned information this support was also carried out in the same 
manner as in the case of the vertical one. The consecutive idealization of the boundary conditions as 
it has been described above is documented in Fig. 5.  

 
Fig. 5: Idealization of the boundary conditions 

 3.4 Results and Monitored Aspects 
With regard to the complications occurred in the area of the idealization of the boundary 

conditions and the need to verify the correct functioning of the selected finite elements PLANE182 
and SOLID185 4 sets of the case simulations in total were solved using the solver of the Newton-
Raphson system of non-linear equations of the ANSYS computational system. Within these case 
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studies, the effect of the different finite element mesh size of 1 mm, 2 mm, 5 mm, 10 mm and 20 mm 
was monitored.  

The first set of the non-linear simulations using the above-mentioned material model with the 
vertical support of the computational model showed the incorrect results within the obtained F-d 
diagrams on one side only. Each of the curves had a different shape both in the area of the maximum 
tensile endurance, thus in the area of the localization of cracks, and at the descending branch. No 
connection with the dependence on the mesh was evident from the shapes of these curves and also 
from the values of the maximum tensile force Ft,max achieved, which are documented in Fig. 7(a). 
With respect to these results that are presented in Fig. 6(a), 7(a), 8(a), the boundary conditions were 
modified and subsequently a new set of the computational models was analysed. 

 
(a) 1st set     (b) 2nd set 

 
(c) 3rd set     (d) 4th set 

Fig. 6: F-d diagrams of solved case studies (▬ 1 mm, ▬ 2 mm, ▬ 5 mm, ▬ 10 mm, ▬ 20 mm) 

In this second set of the simulations the previous irregularities were adjusted. However, the 
resulting F-d diagram of the computational model with the finite element mesh of the size of 1 mm 
diverged noticeably from the others. The shape of the resulting curves is shown in Fig. 6(b). The 
above-mentioned problems led to the adjustment of the internal variable of the PLANE182 element, 
where an enhanced strain formulation was chosen instead of the full integration. The 3rd set of the 
computational models of the virtual tension test was computed with the given modification at the 
level of the applied finite element. The results of the 3rd set are presented by Fig. 6(c), 7(c) and 8(c). 

The last set of the numerical simulations was already executed on the 3-D solid elements 
SOLID185 that dispose of 3 translation degrees of freedom in all 8 nodes. The computations on this 
set showed to be very demanding from the point of view of the requirements on the hardware and the 
computational time. Due to this fact the model with the mesh of the size of 1 mm currently has not 
been analysed successfully yet, thus the graphs in Fig. 6(d), 7(d) and 8(d) do not show such 
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information capability. Still, we can say that the resulting F-d diagrams for the meshes of 2 mm, 5 
mm, 10 mm, 20 mm have almost identical form as the curves of the 2nd and 3rd set computed on the 
PLANE182 elements. 

The conclusions made in the previous paragraphs are also documented in the graphs in Fig. 
7(a) to 7(d). The graphs represent the intensity of the maximum achieved force Ft,max. As it has 
already been mentioned, the adjustment of the boundary conditions led to the considerable solution 
stabilization and the values of the maximum tensile force showed falling tendency when enlarging the 
finite element mesh. The graph in Fig. 7(d) where the error at the mesh of 20 mm most probably 
occurred represents the exception to the rule. The author assumes that the given error at the 
SOLID185 elements was caused by their inappropriately chosen size to the task dimensions.  

 
(a) 1st set      (b) 2nd set 

 
(c) 3rd set     (d) 4th set 

Fig. 7: Ft,max diagrams of solved case studies 
(▬ 1 mm, ▬ 2 mm, ▬ 5 mm, ▬ 10 mm, ▬ 20 mm) 

When comparing the obtained results with the previously executed simplified analytic solution 
of the task we can state that there is a very good congruence between the computational and 
analytical solutions. The average intensity of the maximum achieved tensile force Ft,max reached 
23.923 kN at the 1st set, 23.855 kN at the 2nd set, 23.855 kN at the 3rd set and 23.687 kN at the 4th 
set. There are thus deviations of 0.319 %; 0.606 %; 0.606 % and 1.304 %. Further we can mention 
that in the case of the 2nd and 3rd set the difference of the maximum tensile force Ft,max between 1 
mm and 20 mm mesh reached the intensity of and ΔFt,max,3 = 31.7 N. The above-mentioned values of 
the observed control variables and their comparison with the analytic solution is presented in Tab. 2. 

Further, in Fig. 8(a) to 8(d) below the value of the initial tangential modulus of elasticity Etan,ini 
is presented. The accurate comparison of the achieved values including the deviations from the 
analytic solution is also summarize in Tab. 2. 
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Tab. 2: Calculated control variables and their comparison with the analytic solution 
 Ft,max [N] Ft,max,avg [N] |Δ| [%] Ec [GPa] Etan,ini,avg [GPa] |Δ| [%] 

1st set 

24000,0 

23923.8 0.319 

30.000 

30.118 0.393 
2nd set 23854.6 0.606 30.208 0.693 
3rd set 23854.6 0.606 30.208 0.693 
4th set 23687.1 1.321 30.402 1.322 

 
(a) 1st set      (b) 2nd set 

 
(c) 3rd set     (d) 4th set 

Fig. 8: Comparison of results 

 4 CONCLUSION 
The published results of the numerical studies mapping the application of the multiPlas library 

of the material models prove the applicability of this computational tool for solution of the physically 
non-linear tasks. However, it should be mentioned, that the correct idealization of the specific task 
plays a significant role in the solving problems using the finite element method. In this respect the 
special attention has to be paid to the correct set of the boundary conditions. Although the selected 
problem was geometrically relatively simple, the negative dependence on the finite element mesh had 
an impact on some of the solved sets of the computation models. 

This negative aspect proved at all the models with the mesh size of 1 mm. The results for the 2 
mm mesh were already almost identical with 20 mm. Unfortunately, within the executed numerical 
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case studies this negative aspect with the use of the 3-D solid elements SOLID185 failed to be proved 
or disproved, because of the hardware and time demandingness of the computation. However, the 
author believes that these results will be obtained successfully in the future. 
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