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Abstract 

A computational algorithm of a discrete model of von Mises planar steel truss is presented. 
The structure deformation is evaluated by seeking the minimal potential energy. The critical force 
invented by mathematical solution was compared with solution by computer algorithm. Symmetric 
and asymmetric effects of initial shape of geometric imperfection of axis of struts are used in model. 
The shapes of buckling of von Mises planar truss of selected vertical displacement of top joint are 
shown. 
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 1 INTRODUCTION 
The von Mises truss is a static specific planar problem. This is a classic elastic system having 

numerous references in literature [1- 4]. The truss is created by these points, of one top joint, and two 
simple supports (with free rotation and fixed translation boundary conditions). The top joint is 
connected with the supports by means of straight bars. These bars were divided on forty-nine 
segments and fifty nodes. The discrete model is obtained in such a way. If the structure of this planar 
truss is loaded so that the vertical deflection will be imposed to top joint, our output will be individual 
shapes of buckling of the von Mises truss [5]. For a real structure, only one correct way of 
deformation will occur, but computation programmes need not be able to differentiate these shapes. 

The present paper describes an algorithm which simulates the loading of top joint of the von 
Mises truss by deformation – deflection, calculates the force acting at the place of top joint and 
illustrates the shapes of buckling of the von Mises truss at individual deformation steps. The 
computation programme was applied to the model of von Mises truss consisting of bars formed by 
real profiles IPE 200. The values resulting from the programme were compared with mathematical 
solution. 

The programme also takes into consideration the influence of geometrical imperfections which 
can occur in building practice. 
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Fig. 1: Calculation model of von Mises truss 

 2 INPUT PARAMETERS OF CALCULATION MODEL 
The scheme of calculation model of the von Mises truss is illustrated in Fig. 1. The loading is 

defined as a vertical deflection at top joint. The known parameters are the span L and the angle 
formed by the non-deformed von Mises truss with horizontal plane α. If the span L and angle α are 
known we can evaluate the height of von Mises Truss h, see (1). 

 αtgLh ⋅=
2

 (1) 

Subsequently, the bar length (2) can be calculated applying the Pythagorean theorem and 
initial coordinates of individual mass points of the model are evaluated, see (3), (4). 
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where: 
i  – represents the index of calculated node. 

If coordinate yi is evaluated for the top joint, then (4) is adjusted to the following equation 
stemming from (1) and (3): 

  )2( hi
n
hhyi −⋅−=  (5) 

 3 DESCRIPTION AND MATHEMATICAL TESTING OF CALCULATION 
ALGORITHM 
The model formed will be loaded, at top joint, by vertical deflection w. This deflection will be 

increasing by each iteration step k. In the initial step, the value w = 0 m. The size of initial deflection 
is w = 0.01 m for each iteration step. Small deformation d (d = 1x10-6 m) according to the equation 
(6) will be imposed to the first (not the zero) node, the other nodes are included into the calculation 
without deformation (7). According to Fig. 1, at the beginning and at the end of the bar, it can be seen 
the form of simple supports, therefore, the deformation d will not be inserted in these nodes. Their 
coordinates will be then constant on the value x0 = y0 = yn = 0 and xn = L during the whole loading 
time. The small deformation d is added (upper index U) and subtracted (upper index L) from the 
coordinate of counted node. In this way, four quadrate matrices are obtained: 
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 3.1 Calculation of potential energy and solution of the problem of position by the 
Newton iteration method 
For the so modified models, their potential energy can be calculated for corresponding 

coordinates modified by the small deformation d: 
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where: 
Ku  – is axial toughness of segments connecting individual nodes [Nm-1] 

 
'L

EAKu =  (9) 

Kφ  – is bending toughness of a unit formed by a node connecting two neighbouring segments 
[Nm] 
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EIK =ϕ  (10) 

E – Young’s modulus of material elasticity [Pa], 
A – size of cross section area [m2], 
I – second moment of area [m4], 
u – size of distance between  node i and (i+1) [m], 
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φ – size of rotation between node i and (i+1) [rad] 
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Analogously, L
y
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x

L
y
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x uu ϕϕ ,,,

 
will be obtained. The small deformation d will be inserted in the 

following node and the calculation will be repeated. The Newton iteration method was applied to find 
extremes of these potential energies: 
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where: 

( ) ( )k
i

k
i yJxJ ,  – is the Jacobi’s matrix of partial derivations of the vector of function f in the 

given iteration step k for node i with coordinate x, or, as the case may be, y, 

( ) ( )k
i

k
i yvxv ,  – vector of unknown deflections of coordinate x, or, as the case may be, y 

and 
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( ) ( )k
i

k
i yfxf ,  – numerical central derivations for vectors of potential energies, as given in 

relation (14) 
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Assuming the matrix ( ) ( )k
i

k
i yJxJ ,  to be regular, the vector of unknown deflections 

( ) ( )k
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k
i yvxv ,  gets just only one solution. The resulting values can be obtained, e.g. by applying the 

Gaussian elimination method, and so, new positions of individual nodes of the model can be 
determined: 
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In such a way, new coordinates for displacement of nodes are calculated. In next step of 
calculation, the model is loaded by increasing size of initial deflection w = 0.01 m for each iteration 
step k and calculation is continued from equations (6 and 7). 
 wkhy indexmidpo ⋅−=)int(  (16) 

The outputs are the diagram of dependence of the force on vertical deflection of top joint and 
buckling shapes of the von Mises truss at individual iteration steps. This method was published in [6]. 

 3.2 Comparison of computer algorithm with mathematical solution 
The model of von Mises truss of span L = 10 m and angle α = 45° was chosen for the present 

study. The model was divided into 50 nodes, 49 segments with axial tension stiffness and 48 bending 
units with bending stiffness. The cross section for straight trusses was the profile IPE 200 loaded by 
bending about the minor principal axis. The objective was to find the critical force Fcr at changing 
vertical deflection w and to compare this value of critical force with mathematical solution. The 
mathematical solution [7] is based on the pair of cases in Fig. 2. 

 
Fig. 2: Cases: a) Longitudinal solution b) Bending solution 

One of these cases is the assumption of bar with bending stiffness equal to infinity. Such 
truss cannot buckle when loaded by vertical deflection of top joint, it remains straight after 
deformation and thus ∞→I . Its elongation or shortening will be obtained from the relation (17) 

 .'''
EA
NLlL =−=Δ  (17) 

According to the equilibrium condition in the middle joint, it holds: 
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The equation (19) was derived with used (17) and (18): 
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where: 
l‘  – is the length obtained  from the Pythagorean theorem [m]. 

The equation (17) will be then modified. This solution was derived in [8]: 
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For the second case, a straight bar with high axial stiffness ∞→A  and real bending stiffness 
'LEI  is considered. Due to this fact, only buckling of the bar can occur, elongation or compression 

does not take place. The problem of plane buckling is concerned, where the value of the Euler critical 

force can be written as 
22 'LEINN cr π== . The situation is presented in Fig. 2b. By 

substituting crNN =  into the relation (18), it will be obtained: 
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Dependence of the force F2 on vertical deflection was expressed. To find the critical vertical 
deflection wcr, it will suffice to compare the two cases, 21 FF = : 
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By substitution into the equation for the problem examinated, 41084.9 −×=crw m will be 
obtained, and subsequently, the studied critical force 236.8321 === FFFcr kN will be calculated. 
Maximum force reached according to the computation programme was 126.83max =F kN. The 
calculation deviation differs by 0.13%. It can be concluded from this fact that the calculation carried 
out on behalf of a computer algorithm is relatively accurate. This method was published in [9]. 

 4 NUMERICAL NONLINEAR ANALYSIS OF IMPERFECT TRUSSES 
As real building structures are influenced by geometrical imperfections, the chosen problem 

will be enlarged by their introduction into a computer programme. In Fig. 3, there can be observed 
some shapes of buckling of trusses when changing the vertical deflection w, as it was described 
in [10]. The studied von Mises planar truss has an angle α = 15°. Both models are loaded by 
geometrical imperfections.  

The model on the left is loaded by symmetrical imperfection, which having shape of one half-
wave sine function with amplitude 1000/'L . The deformation of the form of model is the same, 
contrary to the model on the right. There, the imperfection with amplitude 1000/'L  is introduced 
with amplitude only into the left bar, the right bar remains straight without influence of imperfection. 
The very small bow imperfection 1000/'L  of left bar has made significant asymmetry deformation of 
von Mises planar truss during loading step, see Fig. 3. It can be seen that the models with 
symmetrical imperfection deform less than the models with asymmetrical imperfection. To make the 
difference in curvature of axes evident, an enlarged scale had to be used. 
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Fig. 3: Deformation of the von Mises truss with initial imperfection: a) Symmetrical b) Asymmetrical 

 5 CONCLUSION 
In the present paper, the algorithm was described which simulates the loading of top joint of 

the von Mises truss by deformation – by deflection, the value of force loading on the top joint is 
calculated, and the shapes of buckling of the von Mises truss are illustrated at individual deformation 
steps. The programme output was compared on behalf of mathematical solution. Some shapes of 
buckling of the model of the von Mises truss with the influence of the symmetrical and asymmetrical 



 

83 

initial imperfections were presented. According to the study, it can be assumed that the models with 
asymmetrical imperfection deform more than the models with symmetrical imperfection. For the 
future, it is planned to find how these model behave when introducing other initial geometrical 
imperfections. Results have shown that the computer programme can be also useful for studying 
load-deflection curves of asymmetrical trusses with random imperfection. 
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