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Abstract 

Parameter estimation uncertainty is often neglected in reliability studies, i.e. point estimates of 
distribution parameters are used for representative fractiles, and in probabilistic models. A numerical 
example examines the effect of this uncertainty on structural reliability using Bayesian statistics. The 
study reveals that the neglect of parameter estimation uncertainty might lead to an order of magnitude 
underestimation of failure probability. 
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 1 INTRODUCTION 
 1.1 Problem statement 

In probabilistic engineering analysis the physical properties are typically modelled as random 
variables. Even if selected variables are derived from advanced models, the basic variables are 
commonly represented as random variables to express their uncertainty in the chosen modelling 
space. The parameters of the related probabilistic models are estimated from observations and 
experimental data. The scarcity of this information inevitably leads to uncertainty regarding the 
parameter estimates. This uncertainty is often neglected in probabilistic analyses, e.g. in reliability 
case studies [10; 18], and in deriving representative fractiles [4; 21]. A Venezuelan rainfall study [4] 
highlights how this neglect can cost thousands of lives and cause extensive damage as a component 
of the “naïve use of extreme value techniques”. Additionally, this uncertainty appears to be neglected 
or inadequately addressed in some standards and standardization processes as well. Therefore, the 
aim of this paper is to analyse the effect of parameter estimation uncertainty on the failure probability 
of structures. For simplicity this study focuses solely on this effect, other uncertainties are not 
considered: 

• Model uncertainty, e.g. how accurately a resistance formulae describes experiments; 
• Probability model uncertainty, e.g. selection of an appropriate distribution type; 
• Measurement uncertainty, e.g. resolution of the measuring device; 
• Human error, e.g. negligence, error in calculations. 
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 1.2 Parameter uncertainty in standards 
EN 1990 for basis of structural design contains an informative annex related to parameter 

estimation uncertainty; however, it is restricted to normally or lognormally distributed resistance 
variables, and general principles are not included. It focuses on estimating characteristic and design 
values, and does not mention other than resistance random variables nor how this uncertainty should 
be taken into account in reliability calculations. The following background documents for Eurocodes 
on variable actions suggest that parameter estimation uncertainty is neglected in drafting the code: 

• The report on the joint European research that produced harmonized ground snow map for 
member countries uses method of moments point estimates, thus disregards parameter 
estimation uncertainty [20]. 

• The same approach is adopted for thermal actions [19], the method is also included in the 
annex of EN 1991-1-5 for thermal actions on structures. 

In Eurocodes there is no reference to studies regarding the recommended partial factors; 
therefore, it is unclear whether or not they are accounting for parameter uncertainty. However, it 
seems unlikely considering the treatment of snow and thermal actions, and lack of regulations in EN 
1990. 

A background document [7] of American ASCE 7-10 [2] standard states that the partial factors 
(load and resistance factors) take into account the parameter estimation uncertainty by increasing the 
variance of random variables. The applied approximate technique seems to be based on the posterior 
predictive distribution of a normally distributed random variable with known variance and vague 
priors, but again no general rationale is provided, hence it is of limited applicability. 

To our knowledge the effect of neglecting parameter estimation uncertainty has not yet been 
studied and the performance of the mentioned approximate techniques has not yet been investigated. 

 1.3 Adopted conceptual framework to explore parameter uncertainty 
A simplified numerical example is selected and the probabilistic models, i.e. distribution 

function, for resistance and effects are assumed to be known. From each of these a random sample is 
generated and probabilistic models are inferred with the only assumptions that the distribution type is 
known, and the parameters have uniform prior on wide support. This latter condition is adopted for 
the fair comparison between the Bayesian and maximum likelihood based approaches. In practical 
applications stronger prior information is almost always available and its incorporation is strongly 
recommended. The obtained probabilistic models with and without parameter estimation uncertainty 
are then applied to calculate and critically compare the failure probabilities. Bayesian approach is 
promoted here as it can naturally incorporate parameter estimation uncertainties using the posterior 
predictive distribution. The posterior mean is selected as a point estimate that neglects parameter 
uncertainty. 

Additionally, a more widely applied maximum likelihood based approach is used as well 
where the parameter estimation uncertainty is approximately taken into account by using 75% level 
confidence intervals. The effect of sample size and sampling variability is then analysed in more 
details. 

 2 STATISTICAL INFERENCE 
 2.1 Bayesian inference 

Bayesian statistics views parameters of a probabilistic model as random variables and uses 
Bayes’ rule for statistical inference. For continuous random variables it is given as: 

 ( ) ( ) ( )
( ) ( ) d

f f
f

f f

⋅
=

⋅ ⋅
Θ

θ x θ
θ x

θ x θ θ
 (1) 

where: 
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f(.) – probability density function; 
x – vector of observations; 
θ – vector of model parameters; 
Θ – space of model parameters. 

The mean of the parameter’s posterior distribution is selected as point estimate, the 
corresponding probabilistic model does not take into account parameter uncertainty. 

The posterior predictive distribution is obtained by integrating over the posterior distribution 
of the parameters [1]: 

 ( ) ( ) ( )| df x f f x= ⋅ ⋅
Θ

x θ x θ θ% %  (2) 

The parameter estimation uncertainty is thus incorporated through this averaging. Vague 
priors are applied to have a more or less sound base for comparison with the maximum likelihood 
based approach. This means uniform distribution on sufficiently wide interval. 

 2.2 Maximum likelihood method 
For comparison, maximum likelihood parameter estimation is applied as well. The distribution 

function corresponding to maximum likelihood parameter estimates is given as: 

 ML
ˆ( ) ( , )F x F x= θ  (3) 

where: 
F(.) – cumulative probability distribution function; 

θ̂  – vector of parameters’ maximum likelihood estimates. 
The parameter uncertainty is taken into account using confidence intervals. This approach is 

included in the EN 1990, adopted for S-N curves in EN 1993-1-9, and used for representative wind 
loads in South Africa as well [13]. It is an approximate technique that is used for particular problems, 
but no general method or rationale is provided in the referred documents. Herein, it is extended to 
cumulative distribution functions using the delta method [3]. The variance of a derived parameter can 
be estimated from the variance-covariance matrix of the parameters: 

 ( ) 1 T

ML ML o MLVar ( ) ( ) ( )F x F x F x−= ∇ ⋅ ⋅ ∇I  (4) 

where: 
Io – observed Fisher information matrix. 

Utilizing the asymptotic normality property of the maximum likelihood estimator the 75% 
level one-sided confidence value can be calculated as follows: 

 ( )1

75CI ML ML( ) ( ) (0.75) Var ( )F x F x F x−= ± Φ ⋅  (5) 

(.)Φ  standard normal cumulative distribution function. 

The sign of the second term is determined by the sign of the sensitivity factor of the random 
variable to get a conservative estimate. If the approximated value of the distribution function falls 
outside the [0,1] it is constrained to the closer bound. 

 3 NUMERICAL EXAMPLE 
 3.1 Mechanical and probabilistic models 

A simple limit state function is selected to demonstrate the effect of parameter estimation 
uncertainty on reliability. It can be viewed as the cross-section level limit state function of a structure 
subjected to 50-year maxima of a variable action: 
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 ( )50g R Q Gμ= − ⋅ +  (6) 

where: 
g – limit state function; 
R – resistance; 
μ – conversion factor, e.g. shape factor, pressure coefficient; 
Q50 – 50-year maxima of a variable action; 
G – permanent action. 

For simplicity it is assumed that these actions are directly convertible to effects, e.g. internal 
forces, by a factor of 1.0, thus actions and their effects are interchangeable here. The connection 
between 1 year and 50-year maxima distributions is established by assuming statistical independence 
of annual maxima: 

 50

50 1( ) ( )F q F q=  (7) 

The probabilistic models are summarized in Tab. 1. With the exception of variable action the 
sample sizes are selected to reflect information from other sources as well since these are not site-
specific, these numbers express our experience, engineering judgement. Generalised extreme value 
distribution is adopted for the variable action instead of the in Europe commonly applied Gumbel 
since it was shown to be non-conservative and to have deceptively narrow confidence interval for 
modelling extremes in some cases [4; 16; 17; 21]. For annual maxima of variable action coefficient of 
skewness of 1.6 is considered. This value is obtained from meteorological data of snow load on the 
ground for Hungarian lowlands and is deemed representative for lowlands in Central Europe. The 
two-parameter lognormal and normal distributions are parametrized in a standard way, the 
generalised extreme value distribution is defined by shape, scale and location parameters [3]. 

The load-ratio χ is defined as: 

 50

50

Q

G Q

μ
χ

μ
⋅

=
+ ⋅

 (8) 

For the selected problem the load-ratio is 0.73 using mean values, and 0.84 using 
characteristic values, i.e. mean for permanent action and 0.98 fractile for variable action. These ratios 
correspond to lightweight steel structures. 
Tab. 1: Properties of the generating probabilistic models, and selected sample sizes 

 Distribu-
tion 

Mean Coeff. of 
var. 

Sample 
size 

Reference 

Resistance, R LN 200 0.15 20 [11] 

Conversion factor, μ LN 0.80 0.17 20 [8] 

Variable action (annual), Q1 GEV 20 0.70 50 [20] 

Permanent action, G N 20 0.10 50 [12] 

N – normal; LN – two-parameter lognormal; GEV – generalised extreme value. 

 3.1 Numerical analysis, implementation 
The Bayesian inference is completed using numerical integration. Uniform, mutually 

independent priors are applied for all parameters, the support of a prior function is determined using 
the parameter’s maximum likelihood estimate and its approximate standard deviation (based on the 
observed Fisher information matrix). The numerical integration is validated using Markov Chain 
Monte Carlo simulation where besides the uniform priors unbounded normal distributions with very 
large standard deviation are applied as well. If a parameter is bounded by definition then truncated 
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normal distribution is applied. The calculations confirmed the validity of the numerical integration 
that is applied in further analysis because even for three parameters it is more efficient than Markov 
Chain Monte Carlo simulation, especially because the tails of the distributions are needed in the 
reliability analysis. 

First order reliability method (FORM) [14] is used to calculate the failure probability, the 
results are verified by importance sampling simulations. All presented results are corresponding to 
FORM analyses. When non-parametric distribution functions are applied multiple discretizations are 
tested to verify the convergence of calculations. 

 4 ANALYSIS RESULTS 
Initially a single random sample is generated from each random variable using sample sizes 

given in Tab. 1. These are hereinafter referred to as “selected realizations”. 

 4.1 Statistical analysis 
The results of the statistical inferences are illustrated in Fig. 1. The observations and fitted 

models for each random variable are plotted in a transformed space, e.g. normal space refers to a 
space where the normally distributed random variables form a straight line. This presentation has the 
advantage that (i) the models are easier to visually compare; (ii) deviation from the particular 
distribution type is clear; (iii) the crucial tail regions are enlarged by the logarithmic like scale of the 
horizontal axis. In the Gumbel space convex curves correspond to Fréchet while concave to Weibull 
distribution. 

 

 
Fig. 1: Observations and fitted distributions in matching space. Maximum likelihood (dashed blue), 

one-sided 75% confidence interval (solid blue), posterior mean (dashed green) and posterior 
predictive (solid green) distributions 
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For all random variables the maximum likelihood model with 75% confidence interval is close 
to the Bayesian posterior mean, while the maximum likelihood point estimate model runs 
consistently under the Bayesian point estimate. The distance between the Bayesian point estimate and 
posterior predictive models is increasing as moving away from the mean. The difference between the 
maximum likelihood model with 75% confidence interval and Bayesian posterior predictive is salient 
in these regions especially for the variable action. 

 4.2 Reliability analysis 
Reliability analyses are conducted using all four probabilistic model sets determined in 

Section 4.1. These correspond to the selected realizations, the results are summarized in Tab. 2. 

Tab. 2: Summary of reliability indices and failure probabilities using maximum likelihood based and 
Bayesian probabilistic models 

 Maximum 
likelihood 

Maximum likelihood 
with 75% confidence 
interval 

Bayesian 
posterior mean 

Bayesian 
posterior 
predictive 

Reliability index, β 4.56 3.94 3.80 2.43 
Failure prob., Pf 2.2·10-6 4.1·10-5 7.1·10-5 7.6·10-3 

Comparison of the Bayesian models shows that the failure probability is increased by two 
order of magnitude by incorporating the parameter estimation uncertainty. The dominant component 
is the variable action (Fig. 2). Moreover, using Bayesian posterior predictive distributions for all but 
the variable action the reliability index is 3.70, this shows that the main source of difference is the 
parameter uncertainty in the variable action model. Fig. 2 also illustrates that the incorporation of 
parameter estimation uncertainty can substantially change the sensitivity factors. 

The ratio between failure probabilities of maximum likelihood model with and without 75% 
confidence interval is about 20. The Bayesian point estimate yields to about 30 times larger failure 
probability than the maximum likelihood estimate. This highlights the significance of the selected 
statistical approach. 

 
Fig. 2: Sensitivity factors for probabilistic models inferred using maximum likelihood (blue) and 

Bayesian techniques (green) 
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600 simulations are used for each sample size, and only the Bayesian models with and without 
parameter estimation uncertainty are considered. The results of simulation study are illustrated in Fig. 
3. The transparent bands encompass 90% of the simulations based on equal tailed fractiles. The 
dotted lines represent the selected realizations extended to multiple sample sizes. The extension is 
done by keeping the old realizations, e.g. in moving from 50 to 75 only 25 new realizations are 
added. The dashed line shows the reliability index obtained using models without parameter 
estimation uncertainty. 

 
Fig. 3: Simulation based comparison of posterior mean (red) and posterior predictive (blue) 
probabilistic models in respect of reliability index and sample size of the variable action (Q) 

As expected, the posterior mean results are fluctuating symmetrically around the reliability 
index without parameter uncertainty while the posterior predictive model is predicting consistently 
lower reliability indices. All the models are converging to the reliability index without parameter 
uncertainty with increasing sample size. The posterior mean estimate based analysis yields to a 
slightly biased estimate of the reliability index without parameter estimation uncertainty. The dotted 
lines show the considerable variability of reliability index as new observations become available. 

The ratio of the posterior predictive and posterior mean failure probabilities for sample size of 
50 for the variable action are calculated for all 600 simulations, and its empirical cumulative 
distribution function is given in Fig. 4. Greenwood’s formula [9] is used to approximate its variance 
and to construct 90% level confidence intervals. The plot shows that for about 50% of the cases the 
ratio is larger than 10 and for 20% it is larger than 100. 

 
Fig. 4: Empirical cumulative distribution function (solid blue) and 90% confidence interval (blue 

band) of the failure probability ratio for sample size 50 (Q) 
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 5 DISCUSSION 
The numerical results imply that the parameter estimation uncertainty has significant effect on 

the failure probability as it can increase it by several orders of magnitude. In some sense it is the 
matter of consensus whether this uncertainty is taken into account in reliability calculations since the 
calculated failure probability is just a decision analysis tool and cannot be directly compared to actual 
failure frequencies. This question is similar to the problem of the selection of distribution type. The 
limited number of available observations does not make it possible to unambiguously select the type 
which typically has larger effect on failure probability than that of the parameter uncertainty [16]. 
The pragmatic consensus among reliability experts seems to be that the distribution type should be 
fixed for each type of random variables. This approach could be adopted in regard of parameter 
estimation uncertainty as well, e.g. it could be agreed that point estimates should be applied. However 
the following arguments are supporting its incorporation into failure probability: 

• It is often misleading to use point estimates to identify probabilistic models and to apply 
these in reliability analysis. Although the point estimates provide the best-fit to the 
observations in some sense, e.g. they maximize the likelihood that the data were generated 
by the distribution or the Bayesian posterior mean minimizes the expected quadratic loss, 
these are related to the explanatory power of the models while in reliability calculations the 
predictive power should be emphasized. For example, the design of a new structure is in 
large extent the prediction of future extreme actions, and it should be based on a prediction 
appreciating the uncertainties stemming from scarcity of data, not just on a model which 
fits best to the historical observations. As Fig. 3 shows the point estimate models very 
often underestimate the failure probability. 

• If point estimates are used the models derived from 5 realizations would convey the same 
confidence as those based on 1000 data. In contrast, the Bayesian posterior predictive 
distribution automatically penalizes the small sample size based predictions. 

• The completeness requirement of the reliability index [5], i.e. all sources of uncertainties 
should be taken into account supports the incorporation of parameter uncertainty.  

• The Bayesian approach provides a natural way to rationally incorporate parameter 
estimation uncertainty. There is no such ambiguity involved as in probabilistic model 
uncertainty, hence independent analysts would calculate the same reliability index; besides 
the prior distributions there is no room for subjective treatment. 

Fig. 1 and Tab. 2 show that the maximum likelihood model with 75% confidence interval is a 
poor approximation to incorporate parameter uncertainty compared to the posterior predictive that has 
rational basis. The former can considerably underestimate the failure probability (Tab. 2). 

The numerical results would likely change if different distribution types were adopted, 
especially in case of the dominant variable action. It is expected that the effect of parameter 
estimation uncertainty would be smaller for real structures since prior information is frequently 
available. Further research is needed to generalise the findings and to assess the sensitivity of the 
numerical results to these assumptions. 

 6 CONCLUSIONS 
The effect of parameter estimation uncertainty on failure probability seems to be neglected in 

reliability studies and in structural standards. Using Bayesian approach it is shown that this neglect 
can lead to several orders of magnitude underestimation of failure probability. The maximum 
likelihood model with 75% confidence interval, promoted in Eurocodes, underestimates this effect 
and consequently may lead to overestimation of a reliability level. Bayesian statistics proves to be a 
suitable tool for treating parameter estimation uncertainty, and Bayesian posterior predictive 
distribution is recommended for its incorporation in reliability studies. However, further research and 
consideration of practical examples are needed to generalise the conclusions. The incorporation of 
this type of uncertainty could be especially important for critical facilities such as nuclear power 
plants where site-specific data are used to construct the probabilistic models. 
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