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Abstract

The paper deals with some chosen aspects of stochastic sensitivity structural analysis and its
application in the engineering practice. The main aim of the study is to provide the generalized
stochastic perturbation technique based on classical Taylor expansion with a single random variable.
The study is illustrated by numerical results concerning an industrial thin shell structure modeled as
a 3-D structure.
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1 INTRODUCTION

It is known that the most effective computational tool in civil engineering nowadays is the finite
element method [1, 2], as the basis of almost all structural analysis computer codes. On the other hand,
in modern design, sensitivity analysis cannot be avoided, since it makes it possible to determine the so-
called starting point (or design point), leading to the optimal solution. Recently, the sensitivity issues
are discussed extensively in the literature. Background of the design sensitivity analysis is presented
in [3], for instance. The sensitivity analysis can be carried out with respect to local design variables,
such as cross-sectional area, element thickness, Young’s modulus, Poisson’s ratio, loading [4].

In accordance with developments of the computational technique, uncertainties of the design
variables appear to be necessarily needed in the state-of-the-art methodologies in computer terms.
Besides the traditional Monte Carlo simulation, we may mention the spectral approach [5] and, seeming
more effective, perturbation approach [6, 7]. In the latter, all the functions of random variables are
expanded exponentially. By using the first two probabilistic moments for random variables on input,
the first two probabilistic moments of the structural response are obtained on output; the expectations
are second-order accurate, while the cross-covariances are first-order accurate [8-10, 14].

In paper a new problem of computational mechanics is formulated for static stochastic
sensitivity (before problem was solve separately [11] and [12]). Since both the random and design
variables are expressed in a dicretized-parameter space, the stochastic sensitivity function can be
modelled in a parallel way and evaluated by using a conventional deterministic finite element
technique; and the computer procedures can be carried out in parallel for dual systems and sequentially
for their Oth-, 1th- and 2nd-order equations.

2 FINITE ELEMENT FORMULATION

Consider structural response of the linear-elastic systems with N degrees of freedom described
by the functional

® = G[q(h, b), b] )
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and the system equilibrium equations

Ku3(h, b) qg(h,b) = f,(h,b) a,B=1,..,N (2
where h = {hd}, d=1,..,Dand b={b"}, r =1, ..., R, are vector of design variables and random
variables. Some of all components in the vector & and b can coincide. Symbols K,z (h, b), f, (h, b) and
qp(h,b) represent the stiffness matrix, the vectors of external loads and nodal displacements,
respectively.

Since uncertainties in geometry and material properties of the system member are taken on
account, the stiffness, load and displacement are random functions; K,z(h,b) and f,(h,b) are
generally explicit functions of random and design variables, whereas qg (h, b) is implicit function of
these variables.

The random variables b" can be defined via the first two probabilistic characteristics:
expectations b” and cross-covariances Cov(b", b®) as

BT =E[b] = '] b"p(b") db” 3)
Cov(b",b%) = E[(b" — b})(b* — b§)] =
= R(b",b%)\/Var(b")Var(bs) @)

with

R(b",b%) = ffj;o b" bS5 p(b",b%)db"db® rs=1,..,R 5)

Var(b") = a?E? [ b"] 6)
where R(b",b%), Var(b",b*), p(b",b%) and a denote: functions of correlation, variance, joint
probability density and the coefficient of variation, respectively.

The functions of random variables Kz, f, and qg can be handled with the finite difference
technique or by the leas square fit method, cf. [7], for instance. In this paper, a perturbation scheme
will be employed.

Suppose that , f, and gz are twice differentiable with respect to h¢. Using the chain rule of
differentiation leads to

=9+ @ gy (7)
where ()¢ is the first ordinary derivative with respect to the dth design variable, while (-)® and () 4
are the first partial derivatives with respect to the d-th design variable and a-th nodal displacement,
respectively.

Because @ is an explicit function of its arguments, the components &% and @ ,, are known. The
derivatives q}f must be determined, since g, are implicit with respect to h%. Differentiating the
equilibrium Eq. (2) with respect to h® yields

Kag d = fa' — K ap ®)

To eliminate g from (7), the adjoint system method is used. The adjoint vector A, may be
defined so that the adjoint equations system takes the form

Kap dg = o ©)
that, substituted (9) into (7) and on account of (8), implies
o = & + A (f5 — K ap) (10)

As mentioned above, the functions of random variables Ky, fo»» qp» K, (f;;, f,,;d and ®¢ are now

expanded around the expectations b” via the second-order perturbation, with a given small parameter
6, symbolically written as

()(h,b) = ()° + ()" Ab" + 02 () AbT A rs=1,.,R (1)
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in which Ab”™ denotes the perturbational increment of br with respect to b} , and ()%, (-)" and ()"
describe the zeroth, first and mixed (second) ordinary derivatives with respect to b™.

Substituting the expansions of Kug, fy, @4, qp and 4, into (2) and (9) and equating the
coefficients of the parameter 0 to zeroth, first and second power, we obtain

one pair of the zero-order equations

Kpah = f2 (122)

Kagly = @Y (12b)
r pair of the first-order equations

Kogay = fi — Kgpap (13a)

Kophy = @g — KgpAp r=1,..,R  (I3b)
one pair of the second-order equations

KSpas = (17 = Kipas — Kijjag) Cov(b", b*) (142)

2 ;

Kaﬁlé) = (307 — KI5 — KJ529) Cov(b”, b°) (14b)
where

q® = rSCov(bT,bS) (15a)

29 = ”Cov(br bS) rs=1,..,R (15b)

Having solved for q$ B> qk and q B )in (12a), (13a) and (14a), the first two probabilistic moments
for g, can be computed by using the expansion (11) with 8 =1, i.e.,

qa(h,b) = qS + 0q;y Ab” +~02¢;° Ab"Ab® rs=1,.,R (16
The expectation vector for q, can then be obtained as

Ta = a%tq” (17)
To compute the cross-covariance matrix, we note that, cf. (16) and (17),

Ade = qu — E[qq] = qi Ab” +2.q;°Ab"Ab® — ¢ (18)

with qéz) being a deterministic quantity so that C ov(qa, qﬁ) =F [Aquq,;] can be expressed as
Cov(qa, qs) = 4 g5 Cov(d”,b%) — ¢ g (19)

It should be pointed out here that both the solutions (17) and (19) are second-order accurate,
when compared with the ‘conventional’ ones, [6 - 8], in which only the expectation vector is second-
order accurate, while the cross-covariance matrix is first-order accurate.

When ¢ and A3 from (12) are known, the functions g , A%y, q (2) and A7 )can be solved by (13)
and (14) in a sequential manner. In this way, it is possible to calculate the probablhty distribution of
sensitivity. The expectations and cross-covariances of the sensitivity gradient are then written as, cf. [9]

E[@4] = G4 + = G9mCov(bT, b*) + AL(A545) +
—Kogq P25 + (BEXg + CEroa9)Cov(bT, b°) (20)
and
Cov(®4, D) = [GLTGS + (GUTAE + GoT AL NS+
+(G4TBE + GeTBE)AY + ALAS AT AT+
+(ALBE™ + AZBIT) X3 A% + BETBE25,43] Cov(bT, b¥) 1)
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where

AG =~ Ka5 a (22a)

Be" = fa"" — Ko af — Kag a (220)
1rd Ar s 1.4

CgTS = Ef“ s _ Kaqu; - EKaBrsq?? (22C)

withd,e=1,..,D,r,s=1,..,R; a,f =1, ..., N. Also, the cross-covariance matrix (21) is obtained
with the second-order accuracy, and not the first-order one as in [8, 9].

3 NUMERICAL RESULTS

This example (similar [11, 12]) the response of a thin shell structure is considered. Fig. 1 shows
the half of a cylindrical shell clamped at boundaries under uniformly distributed p = 100 kN /m?
pressure (applied normal to shell surface). The remaining input data are: radius R = 2,5 m, length
L =12 m, Young modulus E= 30 MPa, Poisson ratio U= 0,2. The expectation, correlation function
and coefficient of variation of the shell thickness is assumed as:

E(t) =t, = 0,06 R(t,, ts) = 9 exp{—abs [(x, — xo) (¥ — ¥0)]/A} « =0,05;0,10;0,15.
where: Y = 1,5/RL A =2,5RL

The example was solved with the help of the program POLSAP [13]. Input data to example shows in
Fig. 2.

Model
77 nodes
60 elements
Z R
S x
x T 1
6 1 Boundary conditions:
uz=1 uw=1uz=1
=1 ry=1 r=1
ux=0 uw=1uz=0
k=1 =0 r=1
- 42
¥
eq=1 fixed
eq=0 free
60 55
77 74 71

Fig. 1: Cylindrical shell with mesh grid

Due to symmetry only one-quarter of the shell is considered. The finite element mesh include
60 rectangular elements (60 random design variables), and the total number of degrees of freedom
is 313. Tab. 1 and Fig. 3, Fig. 4 gives the computed values of the expectations and standard deviations
of the sensitivity coefficient. The response functional is defined and considered at the mid-point
(node 77) of the shell.
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Fig. 2: Listing input data to program POLSAP
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Fig. 3: Expectations of displacement sensitivity (node 77) - shell thicknesses as random variables

Fig. 4: Standard deviations of displacement sensitivity (node 77) - shell thicknesses as random
variables
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Expectation Std. Dev.
El | Deterministic | « =0,05 | «a=0,10 | «a =0,15 | a =0,05 | a=0,10 | a = 0,15
51 | 5,11E-03 5,15E-03 | 5,24E-03 | 5,40E-03 | 4,91E-04 | 9,81E-04 | 1,47E-03
52 | -1,68E-04 -1,69E-04 | -1,70E-04 | -1,73E-04 | 8,31E-05 | 1,66E-04 | 2,49E-04
53 | 8,43E-04 8,49E-04 | 8,68E-04 | 8,99E-04 | 1,03E-04 | 2,06E-04 | 3,09E-04
54 | 2,56E-03 2,57E-03 | 2,62E-03 | 2,70E-03 | 2,31E-04 | 4,63E-04 | 6,94E-04
55 | 3,80E-03 3,82E-03 | 3,89E-03 | 4,01E-03 | 3,44E-04 | 6,89E-04 | 1,03E-03
56 | 5,18E-03 5,21E-03 | 5,31E-03 | 5,47E-03 | 4,71E-04 | 9,41E-04 | 1,41E-03
57 | 7,26E-03 7,30E-03 | 7,44E-03 | 7,68E-03 | 6,73E-04 | 1,35E-03 | 2,02E-03
58 | 1,57E-02 1,58E-02 | 1,61E-02 | 1,66E-02 | 1,45E-03 | 2,91E-03 | 4,36E-03
59 | 4,72E-03 4,75E-03 | 4,83E-03 | 4,98E-03 | 5,27E-04 | 1,05E-03 | 1,58E-03
60 | -9,42E-02 -9,48E-02 | -9,68E-02 | -1,00E-01 | 9,13E-03 | 1,83E-02 | 2,74E-02

Tab. 1: Displacement design sensitivity - shell thickness as random design variables
(only selected elements nearest for node 77), [1/m?]

4 CONCLUSIONS

be concluded that they differ by no more than 3%, Tab. 1.

In paper ignores the discussion of the analysis of slenderness cylindrical shell in connection

with stability and buckling. This can be realized in the future.
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We observe that some sensitivity values obtained here are negative. In general cases, in the static
response of simple structures, the more massive system is, the lesser displacement is obtained. In this
case, the displacement response is more complicated at places of the corner part, resulting in those
negative values of sensitivity. This means that to decrease the displacement at the considered point 77,
decreasing thickness of shell’s elements in appropriate domains should be required in an alternative
design point. The standard deviations of displacement sensitivity with respect to the shell thicknesses
is about 10-30% of the expectations, Fig. 4. Comparing the stochastic and deterministic results, it can
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