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Abstract 

Elastic shallow shell of translation subjected to the external pressure is analysed in the paper 
numerically by FEM. Nonlinear equilibrium paths are calculated for the different boundary 
conditions. Special attention is paid to the influence of initial imperfection on the limit load level of 
fundamental load-displacement path of nonlinear analysis. ANSYS system was used for analysis, arc-
length method was chosen for obtain fundamental load-displacement path of solution. 
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 1 INTRODUCTION 
Shells of translation are structural elements very often encountered in the engineering practice. 

Their middle surface is generated by a vertical curve sliding along another vertical curve. The curves 
can be circles, ellipses, or parabolas. They occur as parts of aircraft and marine structures in 
mechanical engineering, create covers of large span structures in civil engineering. 

These shells subjected to the external distributed load are liable to the buckling due to 
dominant compression membrane forces within the shell. It is the reason, why the stability problem 
has been analysed since the beginning of the twenty century. It was then when the first very slender 
structures of barrel shells appeared. 

Solving stability of the thin shell, it is often insufficient to determine the elastic critical load 
from eigenvalue buckling analysis, i.e. the load, when perfect shell starts buckling. Nonlinear analysis 
is necessary, resulting in a full load-displacement response. Basis of this paper is to highlight the 
difference in the results of these two approaches. It is also necessary to include initial imperfections 
of real shell into the solution and determine limit load level more accurately. To confirm the high 
sensitivity of shallow shells to imperfections is also the aim of this paper. The geometrically 
nonlinear theory represents a basis for the reliable description of the postbuckling behaviour of the 
imperfect shell. Murray and Wilson [1] first presented idea of combining incremental (Euler) and  
iterative (Newton-Raphson) methods for solving nonlinear problems. Early works involving critical 
points and snap-through effect were written by Sharifi and Popov [2], and Sabir and Lock [3]. Using 
arc-length method to pass limit points on load-displacement paths introduced Riks in [4]. Getting 
through this problem using displacement control procedure presented Batoz and Dhatt [5]. Detection 
of critical points using arc-length method was introduced by Wriggers and Simo [6]. Works of Bathe 
[7] dominate in application of FEM to geometric nonlinear problems, Crisfield [8] incorporated 
problematic into pc codes. 
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 2 THEORY 
Restricting to the isotropic elastic material and to the constant distribution of the residual 

stresses over the thickness, the total potential energy can be expressed as: 
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where kε ,m  are strains and curvatures of the neutral surface, 00 ,kε m  are initial strains and 
curvatures, pq,  are displacements of the point of the neutral surface, related load vector, D  is the 
elasticity matrix. 

The system of conditional equations [9] one can get from the condition of the minimum of the 
increment of the total potential energy 0=ΔUδ . This system can be written as: 

 0FFFαK =Δ−−+Δ extextintinc , (2) 

where incK  is the incremental stiffness matrix of shell, intF  are the internal forces of shell, extF  is the 

external load of shell, extFΔ  is the increment of the external load of shell. Eq. (2) represents the base 
for the Newton-Raphson iteration and the incremental method as well. 

In the case of the structure in equilibrium 0FF =− extint , one can execute the incremental step 

extincextinc FKαFαK Δ=ΔΔ=Δ −1  and ααα Δ+=+ ii 1 . The Newton-Raphson iteration can be 
arranged in the following way: supposing that iα  does not represent exact solution, the residua are 

ii
ext

i rFF =−int . The corrected parameters are iii ααα Δ+=+1 , where i
inc

i rKα 1−−=Δ . The identity 
of the incremental stiffness matrix with the Jacobian of the system of the non-linear algebraic 
equation was used. Iteration process is finished using the suitable convergence norm. 

 3 FINITE ELEMENT ANALYSIS 
Illustrative example of steel shallow shell loaded by the external pressure (Fig. 1) is presented. 

Results of eigenvalue buckling analysis are presented first. They offer an image about location of 
critical points of nonlinear solution, help with settings in the management of nonlinear calculation 
process. Results of fully nonlinear analysis follow (ideal shell and structure with initial imperfection). 
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Lx = 500 mm 
Ly = 400 mm 
A = 30 mm 
B = 20 mm 

h = 50 mm 
thickness 12 mm 
E = 210 GPa 
ν = 0.3 

 

 
Fig. 1: Shallow shell of translation: parameters and numerical model 
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Presented results were obtained by division on 32x32 elements. Boundary conditions are first 
considered as simply supported along all edges (UX, UY and UZ applied on all lines), in the latter 
case shell is supported only at the corner (zero displacements are applied on corner nodes). Element 
type SHELL181 (4 nodes, 6 DOF at each node) was used [10]. The arc-length method was chosen for 
analysis, the reference arc-length radius is calculated from the load increment. Only fundamental path 
of nonlinear solution has been presented. 

Consider firstly case 1 (shell simply supported along the edges). Results of eigenvalue 
buckling analysis are presented in Fig. 2. Elastic critical load i. e. the linearized stability problem of 
the eigenvalue and eigenvectors can be evaluated from 

 0
det

=− GL KK λ , (3) 

where GK  is the geometric matrix  (the matrix of increments of the bending stiffness due to action of 
the membrane forces),  λ – the multiplier of the elastic critical load.  

1 2 

3 4 

pcr,1= 2.426 N/mm2 pcr,2= 2.611 N/mm2 

pcr,3= 2.788 N/mm2 pcr,4= 2.985 N/mm2  
Fig. 2: Results of eigenvalue buckling analysis for case 1 

The eigenvectors from the Eq. (3) represent the modes of buckling. First four critical load 
values and the modes of buckling are arranged in Fig. 2. 
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Fig. 3: Fundamental load-displacement path of nonlinear buckling analysis for case 1 
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Results of nonlinear buckling analysis for ideal shallow shell of translation are presented in 
Fig. 3. Fundamental load-displacement path for apex node is plotted, values of the load at the limit 
points are assigned. Shapes of the buckling area are located next to the path. 

For next analysis, boundary conditions were changed. Shell of the same dimensions and 
material properties is supported by hinges only in the corners (case 2). Results from eigenvalue 
buckling analysis are presented in Fig. 4, the same manner as before. Results from nonlinear buckling 
analysis follow in Fig. 5. 
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pcr,1= 0.715 N/mm2 pcr,2= 0.946 N/mm2 

pcr,3= 0.989 N/mm2 pcr,4= 1.110 N/mm2 
 

Fig. 4: Results of eigenvalue buckling analysis for case 2 

As expected, the difference between the critical load (1st eigenvalue) from eigenvalue buckling 
analysis (0.715 N/mm2) and load level in the upper limit point of the load-displacement path of non-
linear analysis (0.334 N/mm2) is significant again. 
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Fig. 5: Fundamental load-displacement path of nonlinear buckling analysis for case 2 

Let us now analyze nonlinear solution of imperfect shell. The shape of initial displacements 
was created identical to a shape of the 1st eigenmode. Multiplier 0α  of the (dimensionless) buckling 
mode was assumed 0.5 mm and 1 mm respectively. 
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In Fig. 6 one can observe analysis of case 1 (shell simply supported along the edges). Solution 
of perfect shell without initial imperfections is plotted by dashed line. Solution of shell with 
imperfection with magnitude 0.5 mm is plotted by thick line, solution of imperfection with magnitude 
1 mm is plotted by thin line. Including the effects of imperfections we can see a further decline of 
load in the upper limit point in comparison with the perfect shell. In Fig. 7 one can observe analysis 
of case 2 (shell supported only in the corners). 
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Fig. 6: Fundamental load-displacement path from nonlinear buckling analysis for case 1 

(comparison between ideal and imperfect structure) 
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Fig. 7: Fundamental load-displacement path from nonlinear buckling analysis for case 2 

(comparison between ideal and imperfect structure) 
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 4 CONCLUSIONS 
The analysis of very shallow shells ( 16/1800/50/ ==Lyh ) was presented. Results confirm 

the fact that the nonlinear approach is necessary. The difference between the critical load of 
eigenvalue buckling analysis and the load value at the limit point of load-displacement path of 
nonlinear solution is in the tens of percent (depending on the boundary conditions). 

Influence of initial imperfection on the load-displacement path was also investigated. By both 
Figs. 6 and 7 it can be seen drop of the value of load in limit points with the increase of magnitude of 
assumed initial imperfection. Hereby the high sensitivity of shallow shells on the mode and 
magnitude of geometric imperfection was confirmed.     
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