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Abstract 

Theory of differential equations in respect of the functional area is based on the basic concepts 
on generalized functions and splines. There are some basic concepts related to the theory of generalized 
functions and their properties are considered in relation to the rod systems and lamellar structures. The 
application of generalized functions gives the possibility to effectively calculate step–variable stiffness 
lamellar structures. There are also widely applied structures, in that several in which a number of 
parallel load bearing layers are interconnected by discrete-elastic links. For analysis of system under 
study, such as design diagrams, there are applied discrete and discrete-continual models. 
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 1 INTRODUCTION 
Thin-walled lamellar shell structures are applied in various fields of engineering. Implementation in 
structural mechanics of modern large-span structures of having high strength characteristics low-
modulus materials leads to necessity to taking into account of large deformations in comparison with 
thickness at analysis of thin-walled structures.  
Improvements of strength of lamellar structures most naturally are carried out by arrangement of ribs. 
At acting along the walls with apertures of local loadings is advisable reinforcement of spatial structures 
by proper length ribs. The arrangements and type of attachments of these ribs make impact on behavior 
of structure at deformation. 
 Irregularity of geometrical and physical parameters of thin-walled structures causes the significant 
stress concentration and makes dangerous areas for propagation of cracks and plastic deformations. In 
most cases, their load bearing capability is determined due strength conditions or buckling in stress 
concentration areas. 
 In places of regularity break stress concentration zones makes essential influence on load bearing 
capability and stability of thin-walled structures. At this, known traditional analysis and numerical 
methods are less effective. Thus is necessary development of new effective methods for analysis of 
mentioned class of structures. 
 Currently theory of generalized, in particular, discontinuity impulse functions significantly extend 
possibilities of analysis of various having regularity breaks lamellar structures. 
 In structural mechanics the sandwich systems would be considered by having regularity breaks 
systems by thickness. The sandwich plate with lightweight filler and two external load bearing layer 
would be widely applied in structural mechanics as typical element, in that would be various structural 
singularities as additional links, breaks and so on. 
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 In addition by application of generalized functions analysis of including single layered as well 
as in composite materials lamellar structures is rather complex, topical and requires the development 
of special methods of analysis. 

 2 BASIC CONCEPTS OF THEORY OF GENERALIZED FUNCTIONS AND SPLINES 
Theory of solution of inhomogeneous linear differential equations with constant coefficients and 
systems of similar equations containing discontinuous functions, was laid due the works of Heaviside 
and Dirac, and then substantially revised and developed by S.l. Sobolev [1].  
 The theory of differential equations applied to functional spaces is based on the fundamental 
concepts of generalized functions (distribution functions) and splines. Further are stated some of the 
basic concepts of the theory of generalized functions and are considered their properties in relation to 
the mechanics of rod systems [2-13].  
 To describe the continuously distributed values are used ordinary functions. As ordinary continuous 
function refers to such correspondence ݂  in which each element x of the set E correspond an element ,(ݔ)
y in the set F. At this the set E is called as the initial set, and the set F - as finite set of mapping. An 
element x is the independent value (argument) and the element ݕ =  is the dependent value (ݔ)݂
(function). 
In some cases, instead of the function is applied the term of operator. Ordinary functions can be added 
and multiplied by real numbers, so they form a real linear space (linear mapping). 
 To overcome the mathematical difficulties in solving of problems containing concentrated 
inclusions (concentrated loads, distributed loads with discontinuities of the first kind, point masses, 
etc.), a class of ordinary functions is expanded through the application of discontinuous functions. 
 In mechanics form discontinuous functions are widespread unit Heaviside function ݔ)ܪ −  ௢)Hݔ
and delta function ݔ)ߜ −  .(௢ݔ
 Determination of the delta function follows from the properties of the pulse function, which refers 
to continuous or piecewise continuous function s ݔ)ߜ,  of the argument x, depending on the (ߦ
parameter ξ, if they satisfy the conditions [7]: 1) ݔ)ߜ, (ߦ = 0, |ݔ| > ;ߦ ,ݔ)ߜ (2  (ߦ ≥ 0, |ݔ| ≤   ;ߦ

3) න ,ݔ)ߜ ஶݔ݀(ߦ
ିஶ = න ,ݔ)ߜ ݔ݀(ߦ = 1క

ିక . 
 Should be noted that  limక→଴ ,ݔ)ߜ (ߦ = 0, 
as for ݔ ≠ ,ݔ)ߜ 0 (ߦ = 0, if |ݔ| <  .ߦ
 The average height of the function ݔ)ߜ,  on the interval [-ξ, ξ] increases indefinitely, thus (ߦ

limక→଴ ߦ12 න ,ݔ)ߜ ݔ݀(ߦ = limక→଴ కߦ12
ିక ∙ 1 = ∞. 

 Let’s consider the behavior of integral  න ,ݔ)ߜ(ݔ)݂ ௕ݔ݀(ߦ
௔  

when ξ→0, if ݂(ݔ) – is the ordinary, continuous on [a, b]; ݔ)ߜ,  .is the impulse function – (ߦ
 Two cases are possible: 
 1. The interval [a, b] contains a point x = 0, i.e., ܽ < 0 < ܾ and ߦ ≤ ݉݅݊(|ܽ|, ܾ). From definition 
of an impulse function and generalized mean value theorem for definite integral it follows that  
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න ,ݔ)ߜ(ݔ)݂ ௕ݔ݀(ߦ
௔ = න ,ݔ)ߜ(ݔ)݂ ଵݔ݀(ߦ

ିଵ = (଴ݔ)݂ න ,ݔ)ߜ ݔ݀(ߦ =క
ିక  ,(଴ݔ)݂

where ݔ଴ = ሾ−ߦ,  .ሿߦ
 If ξ→0, To ݔ଴→0, and due the continuality ݂(ݔ), ݂(ݔ଴) → ݂(0). Thus at 0∈(a,b) limక→଴ න ,ݔ)ߜ(ݔ)݂ ௕ݔ݀(ߦ

௔ = ݂(0). 
 2. The interval (a, b) does not contain the point x = 0. In this case it is obvious that  limక→଴ න ,ݔ)ߜ(ݔ)݂ ௕ݔ݀(ߦ

௔ = 0. 
 Is introduced the notation limక→଴ ׬ ,ݔ)ߜ(ݔ)݂ ௕௔ݔ݀(ߦ = ׬ ௕௔ݔ݀(ݔ)ߜ(ݔ)݂ , (1)    (1) 

where the symbol δ(x) is the delta function. It characterize the limit behavior of the impulse function 
δ(x,ξ) at ξ → 0, and the integral  න ௕ݔ݀(ݔ)ߜ(ݔ)݂

௔  

it should be understood only in the sense of equality (1), where firstly is necessary to calculate the 
integral  න ௕ݔ݀(ݔ)ߜ(ݔ)݂

௔ , 
and then carry out the limiting passage at ξ → 0. At application of delta function is reduced the limiting 
passage operation, then from the above mentioned two cases, it follows that ׬ ௕௔ݔ݀(ݔ)ߜ(ݔ)݂ ൜݂(0), ݂݅ 0 ∈ (ܽ, ܾ); 0, ݂݅ 0 ∈ഥ (ܽ, ܾ).  (2)      (2) 

 Similarly is introduced the delta function with displacement to the point ݔ଴: ׬ ݔ)ߜ(ݔ)݂ − ௕௔ݔ݀(଴ݔ = ൜݂(0), ݂݅ 0 ∈ (ܽ, ܾ); 0, ݂݅ 0 ∈ഥ (ܽ, ܾ).  (3)     (3) 

 The above stated formulae (2), (3) illustrate the filtering properties of the delta function. 
If ݂(ݔ) = 1 we have 

න ௕ݔ݀(ݔ)ߜ
௔ = ൜1, ݂݅ 0 ∈ (ܽ, ܾ); 0, ݂݅ 0 ∈ഥ (ܽ, ܾ).  

න ݔ)ߜ − ௕ݔ݀(଴ݔ
௔ = ൜1, ଴ݔ ݂݅ ∈ (ܽ, ܾ); 0, ଴ݔ ݂݅ ∈ഥ (ܽ, ܾ).   

 The right-hand parts of these equations are defined as unit Heaviside functions: (ݔ)ܪ = ൜1, ݔ ݂݅ ≥ 0; 0, ݂݅ x < 0.  
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ݔ)ܪ − (଴ݔ = ൜1, ݔ ݂݅ ≥ ,଴; 0ݔ ݂݅ x < .଴ݔ  

 The relationship between the delta function and Heaviside unit function is expressed by the 
following ratios: න ௫ݔ݀(ݔ)ߜ

ିక = ;(ݔ)ܪ න ݔ)ߜ − ௫ݔ݀(଴ݔ
ିక = ݔ)ܪ − ݔ݀(ݔ)ܪ݀;(଴ݔ = ;(ݔ)ߜ ݔ)ܪ݀ − ݔ݀(଴ݔ = ݔ)ߜ − .(଴ݔ  

 At this are valid equalities (ݔ)ߜ = ቄ∞, ݔ = 0;0, ݔ ≠ 0, ݔ)ߜ − (଴ݔ = ቄ∞, ݔ = ,଴;0ݔ ݔ ≠ .଴ݔ  

 Graphic interpretation of a unit function, and δ-function is given in Fig. 1.  
 

 
Fig. 1. Graphic interpretation of a single function, and δ-function 

 
 Then are stated the basic properties of a unit function, δ-function and its derivatives. 

 2.1 Spline Function 
As spline functions commonly are called piecewise-polynomial functions having certain smoothness. 
 With regard to the theory of distributions as a spline function we will understand the function, 
composed from portions of various analytical functions that have derivatives up to the (n-1) order 
inclusive. Thus, the splines would include arbitrary continuous functions. 
If you take the definite integral with variable upper limit of the unit Heaviside function, we obtain a 
simplest linear spline  ݏଵ = ׬ ݔ)ܪ − ௫ିஶݔ݀(ܽ = ׬ ௫௔ݔ݀ = ݔ) − ܽ) при ݔ ≥ ܽ,  

  (4) 
i.e. 
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ଵݏ = ݔ) − ܽ)┘ = ቄ 0, ݔ < ݔ;ܽ − ܽ, ݔ ≥  ,ݔ
where the ┘ symbol indicates the spline function. 

2.2 Calculation of the plates on the action of local loads  
In the examples of calculation obviously is demonstrated the efficiency of application of discontinuous 
functions for presentation of initial ratios, their algorithmic implementations and programming. 
 Even more effective is the application of discontinuous functions at consideration of two-
dimensional problems. The group of tasks includes the problem of bending plates under concentrated 
loads. 
 Local loads acting on the plates, are causing mode of deformations, different from the beams. To 
research it in adjacent to the local loads, let’s firstly consider the bending of circular plates, and then 
consider the rectangular plates.  

2.3 The circular plate loaded symmetrically on the circumference  
Let’s consider a plate of radius a, in which the load is uniformly distributed over the circumference of 
radius b (Fig. 2). 
 In this particular case of symmetrical load bending is described by ordinary differential equation 
ݎ1 [11] ݎ݀݀ ൜ݎ ݎ݀݀ ൤1ݎ ݎ݀݀ ൬ݎ ݎݓ݀݀ ൰൨ൠ =  ,ܦݍ
where  ݎ – is the radial coordinate; ݓ – is the desired deflection function; ܦ – is the cylindrical stiffness of the plate; ݍ – is the intensity of load. 
In accordance with Chapter 1, the load would be represented as  ݍ = ௉ఋ(௥ି௕)ଶగ௕ ,   (5) 

where Р – is the applied load. 
 Due consistently integrating (4) with taking into account (5) we have (3) ݓ = ଵܥ + ଶݎଶܥ + ³ݎଷܥ + ସݐସܥ + ܦߨ8ܲ ൤(ܾଶ + (ଶݎ ln ൬ܾݎ൰ + (ܾଶ − ଶ)൨ݎ ݎ)ܪ − ܾ),  
where ܥଵ – are the integration constants determined from boundary conditions. 

 
Fig. 2. Circular plate symmetrically loaded on circumference  
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 As the deflection at the center of the plate, and angle of rotation have limited value, is assumed ܥଷ = ସܥ = 0 (as at 0→ݎ, ln ݎ → −∞). 
 The constants ܥଵ, ܥଶ are determined depending on the conditions on the external contour. 
For example, at hinged supporting on the contour when at ݎ=а, ݓ = 0 and 
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ଶܥ  = − ௉଼గ஽ ቂln ቀ௕௔ቁ + ௩ିଵଶ(௩ାଵ)ቃ,  (6) ܥଵ = − ܦߨ8ܲ ቈܾଶ ln ൬ܾܽ൰ + ݒ) + 3)ܽଶ − (1 − ݒ)ଶ2ܾ(ݒ + 1) ቉. 
The bending of rectangular plate under the action of a linearly distributed load.  
 Let’s consider rectangular plate under a normal load (Fig. 3). The equation of bending according to 
[11] will be as 

 డర௪డ௫ర + 2 డర௪డ௫మడ௬మ + డర௪డ௬ర = ௤஽.    (7) 

 If the load intensity d(y) is distributed on line , accordingly of stated in Chapter 1  
,ݔ)ݍ  (ݕ = ݔ)ߜ(ݕ)ݍ −  ଵ).  (8)ݔ

 If on the edges of y = 0, y = b occurs wivel supporting, i.e. w = w '' = 0 at y = 0, y = b, the desired 
function of load would be represented as a series  ݓ = ∑ (ݔ)௞ݓ sin(ߚ௞ݕ);ஶ௞ୀଵ(ݕ)ݍ = ∑ (ݔ)௞ݍ sin(ߚ௞ݕ),ஶ௞ୀଵ       (9) 

 

where ߚ௞ = ௞గ௕ ௞ݍ ; = ଶ௕ ׬ ௕଴(ݕ)ݍ sin(ߚ௞ݕ)  .ݕ݀
 Then the problem is reduced to the solution of independent ordinary differential equations as  ቀ ௗరௗ௫ర + ௞ଶߚ2 + ௞ସቁߚ ௞ݓ = ௤ೖ஽ ݔ)ߜ −  ଵ).     (10)ݔ

 At a constant load 
b
qq
k

k β
4= . 

 
Fig. 3. Rectangular plate under action of normal load 

 As it is known from the theory of linear differential equations, the solution of equation (10) is a 
function of  

௞ݓ  = ଵ௞݁௭భೖ௫ܥ + ଶ௞݁௭మೖ௫ܥ + ଷ௞݁௭యೖ௫ܥ + ସ௞݁௭రೖ௫ܥ +  ௞∗,  (11)ݓ
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where  ܥଵ௞ – are the integration constants determined from boundary conditions; ݓ௞∗ − is a particular solution of equation (11); ݖ௜௞ – are the roots of the characteristic equation 
௞ସݖ  − ௞ଶݖ௞ߚ2 + ௞ସߚ = 0.  (12) 
 Solving the equation (14), we obtain  
ଵ௞ݖ  = ଷ௞ݖ = ଶ௞ݖ ;௞ߚ = ସ௞ݖ =  ௞.  (13)ߚ−
 As there are multiple roots, the solution (13) is represented by the formula  
௞ݓ  = ଵ௞݁ఉೖ௫ܥ + ଶ௞݁ିఉೖ௫ܥ + ଷ௞݁ఉೖ௫ܥ + ସ௞݁ିఉೖ௫ܥ +  ௞∗,  (14)ݓ
or with the introduction of the hyperbolic functions 
௞ݓ  = ଵ௞ᇱܥ ܿℎ(ߚ௞ݔ) + ଶ௞ᇱܥ (ݔ௞ߚ)ℎݏ + ଷ௞ᇱܥ ܿℎ(ߚ௞ݔ) + ସ௞ᇱܥ (ݔ௞ߚ)ℎݏ +  ௞∗.  (15)ݓ
 To find a particular solution ݓ௞∗ let’s use the method of integration constants variation. 
 As result we have 
௞ݓ  = ଵ௞ᇱܥ ܿℎ(ߚ௞ݔ) + ଶ௞ᇱܥ (ݔ௞ߚ)ℎݏ + ଷ௞ᇱܥ (ݔ௞ߚ)ℎܿݔ + ସ௞ᇱܥ (ݔ௞ߚ)ℎݏݔ + 
 + ௤ೖଶ஽ఉ³ ݔ)௞ߚൣ − ݔ)௞ߚଵ)ܿℎ൫ݔ − ଵ)൯ݔ − ݔ)௞ߚℎ൫ݏ − ݔ)ܪଵ)൯൧ݔ −  ଵ).  (16)ݔ

 The integration constants ܥ௝௞(j=1, 2, 3, 4) are determined from the boundary conditions at the edges 

of x = 0 and x = a. For example, at simple support at x = 0 and x = a, ݓ௞ = 0 and 02

2

=
dx

wd k  that 

corresponds to the equality to zero of displacements and bending moments on the contours of the plate.  

 Under these conditions, and at 
21
ax =  

 

ଵ௞ᇱܥ = ସ௞ᇱܥ = ଶ௞ᇱܥ ;0 = ௤ೖ஽ ቀܾ௞ܽݏℎ ቀఉೖ௔ଶ ቁ 2൘ + ܿℎ ቀఉೖ௔ଶ ቁ ൬4ߚ௞ଷܿℎ ቀఉೖ௔ଶ ቁ൰൙ ቍ ;
ଷ௞ᇱܥ = ௤ೖ஽ቆସఉೖమ௖௛൬ഁೖೌమ ൰ቇ .  (17) 

 If one member of the series represents the load q, then the formula (16) gives an exact solution of 
the equation. In this case, for the moments and shear forces we obtain the following formulae 

  

௫௞ܯ = ௞ᇱᇱݓ)ܦ − (௞ݓ௞ଶߚߤ = ଶ௞(1ܥ൛ܦ − (ݔ௞ܾߚ)ℎݏ௞ଶߚ(ߤ (ݔ௞ߚ)ℎݏ௞ሾ2ߚଷ௞ܥ+ + + (1 − ሿൟ(ݔ௞ߚ)௞ܿℎܾݔ(ߤ + + ௤ೖଶ௕ೖ ሾ(1 − ݔ)௞ߚ(ߤ − ݔ)௞ߚଵ)ܿℎ൫ݔ − ଵ)൯ݔ + +(1 + ݔ)௞ߚℎ൫ݏ(ߤ − ݔ)ܪଵ)൯൧ݔ − ௬௞ܯ;(ଵݔ = ߤ௞ᇱᇱݓ)ܦ − (௞ݓ௞ଶߚ = ߤ)ଶ௞ܥ൛ܦ − (ݔ௞ܾߚ)ℎݏ௞ଶߚ(1 (ݔ௞ߚ)ℎݏߤ௞ሾ2ߚଷ௞ܥ+ + + ߤ) − ሿൟ(ݔ௞ߚ)௞ܿℎܾݔ(1 + + ௤ೖଶ௕ೖ ሾ(ߤ − ݔ)௞ߚ(1 − ݔ)௞ߚଵ)ܿℎ൫ݔ − ଵ)൯ݔ + +(1 + ݔ)௞ߚℎ൫ݏ(ߤ − ݔ)ܪଵ)൯൧ݔ − ଵ);ܳଵݔ = (ݔ௞ߚ)௞ଶܿℎߚଷ2ܥܦ + ݔ)௞ߚ௞ܿℎ൫ݍ − ݔ)ܪଵ)൯ݔ − ଵ);ܳଵݔ = (ݔ௞ߚ)௞ଶܿℎߚଷ2ܥܦ + ݔ)௞ߚℎ൫ݏ௞ݍ − ݔ)ܪଵ)൯ݔ − .(ଵݔ
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௫௞ܯ = ௞ᇱᇱݓ)ܦ − (௞ݓ௞ଶߚߤ = ଶ௞(1ܥ൛ܦ − (ݔ௞ܾߚ)ℎݏ௞ଶߚ(ߤ (ݔ௞ߚ)ℎݏ௞ሾ2ߚଷ௞ܥ+ + + (1 − ሿൟ(ݔ௞ߚ)௞ܿℎܾݔ(ߤ + + ௤ೖଶ௕ೖ ሾ(1 − ݔ)௞ߚ(ߤ − ݔ)௞ߚଵ)ܿℎ൫ݔ − ଵ)൯ݔ + +(1 + ݔ)௞ߚℎ൫ݏ(ߤ − ݔ)ܪଵ)൯൧ݔ − ௬௞ܯ;(ଵݔ = ߤ௞ᇱᇱݓ)ܦ − (௞ݓ௞ଶߚ = ߤ)ଶ௞ܥ൛ܦ − (ݔ௞ܾߚ)ℎݏ௞ଶߚ(1 (ݔ௞ߚ)ℎݏߤ௞ሾ2ߚଷ௞ܥ+ + + ߤ) − ሿൟ(ݔ௞ߚ)௞ܿℎܾݔ(1 + + ௤ೖଶ௕ೖ ሾ(ߤ − ݔ)௞ߚ(1 − ݔ)௞ߚଵ)ܿℎ൫ݔ − ଵ)൯ݔ + +(1 + ݔ)௞ߚℎ൫ݏ(ߤ − ݔ)ܪଵ)൯൧ݔ − ଵ);ܳଵݔ = (ݔ௞ߚ)௞ଶܿℎߚଷ2ܥܦ + ݔ)௞ߚ௞ܿℎ൫ݍ − ݔ)ܪଵ)൯ݔ − ଵ);ܳଵݔ = (ݔ௞ߚ)௞ଶܿℎߚଷ2ܥܦ + ݔ)௞ߚℎ൫ݏ௞ݍ − ݔ)ܪଵ)൯ݔ − .(ଵݔ

  (18) 

  

 

௫௞ܯ = ௞ᇱᇱݓ)ܦ − (௞ݓ௞ଶߚߤ = ଶ௞(1ܥ൛ܦ − (ݔ௞ܾߚ)ℎݏ௞ଶߚ(ߤ (ݔ௞ߚ)ℎݏ௞ሾ2ߚଷ௞ܥ+ + + (1 − ሿൟ(ݔ௞ߚ)௞ܿℎܾݔ(ߤ + + ௤ೖଶ௕ೖ ሾ(1 − ݔ)௞ߚ(ߤ − ݔ)௞ߚଵ)ܿℎ൫ݔ − ଵ)൯ݔ + +(1 + ݔ)௞ߚℎ൫ݏ(ߤ − ݔ)ܪଵ)൯൧ݔ − ௬௞ܯ;(ଵݔ = ߤ௞ᇱᇱݓ)ܦ − (௞ݓ௞ଶߚ = ߤ)ଶ௞ܥ൛ܦ − (ݔ௞ܾߚ)ℎݏ௞ଶߚ(1 (ݔ௞ߚ)ℎݏߤ௞ሾ2ߚଷ௞ܥ+ + + ߤ) − ሿൟ(ݔ௞ߚ)௞ܿℎܾݔ(1 + + ௤ೖଶ௕ೖ ሾ(ߤ − ݔ)௞ߚ(1 − ݔ)௞ߚଵ)ܿℎ൫ݔ − ଵ)൯ݔ + +(1 + ݔ)௞ߚℎ൫ݏ(ߤ − ݔ)ܪଵ)൯൧ݔ − ଵ);ܳଵݔ = (ݔ௞ߚ)௞ଶܿℎߚଷ2ܥܦ + ݔ)௞ߚ௞ܿℎ൫ݍ − ݔ)ܪଵ)൯ݔ − ଵ);ܳଵݔ = (ݔ௞ߚ)௞ଶܿℎߚଷ2ܥܦ + ݔ)௞ߚℎ൫ݏ௞ݍ − ݔ)ܪଵ)൯ݔ − .(ଵݔ

  

Charts of function ݓ௞ and its first derivative are smooth, the chart of its second derivative has a 
break, and the third - a jump that corresponds to the character of distribution of moment and shearing 
force. Due to the presence of discontinuous functions in the formulas (25) components of mode of 
deformation are defined in the zone of discontinuity with the same precision as in the area of soft load 
changes. 

Charts of deflections ω1, angles of rotation ߱ଵᇱ , moments ߱ଵᇱᇱ − ௞ଶ߱ଵ and shear forces ߱ଵᇱᇱᇱߚߤ  ଵ߱′, showing the distribution pattern of discontinuous functions ω1 and its derivatives, are constructedߚ−
on Fig. 4.  

These charts are at ݔ =  .ଵ have breaks and jumps, typical for moments and forcesݔ
By similar transformations is obtained solution at a load distributed along the line y−y1. In this case, 
all designed formulas are obtained from (10), (18) by replacing the β→α, x→y, y→x, x1→y1. 

With simultaneous application of loads concentrated on the lines x = x1 and y = y1, the total 
solution is obtained by the superposition of both solutions. 

In the case of randomly distributed along the line load х=х 1 , for each term of a series ݓ௞ and ݍ௞ (11) are valid all stated transformations. 
If on the line х=х 1  is applied the moment load M, the equation (10) takes the form  

 డర௪డ௫ర + 2 డర௪డ௫మడ௬మ + డర௪డ௬ర = ெ஽ ݔ)′ߜ −  ଵ).   (19)ݔ

where ݔ)ߜ −  .ଵ) –is the derivative of the delta functionݔ
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Fig. 4. Distributed discontinuous functions ω1 and their derivatives 

 
 In this case, representing the desired function and the function of load in series similar to (11), we 
obtain the solution as (15), where a particular solution w* is expressed by the formula  ݓ௞∗ = ௞ߚܦ2ܯ නൣ(ݔ − ݔ)௞ߚℎ൫ݏ(ߟ − ߟ)ߜ൯൧(ߟ − ߟ݀(ଵݔ =௫

଴  

 = ெଶ஽ఉೖ ݔ) − ݔ)௞ߚℎ൫ݏ(ଵݔ − ݔ)ܪଵ)൯ݔ −  ଵ).  (20)ݔ

 Due differentiating (15) with taking into account of (20), we obtain formulas for the forces and 
moments. Charts of moments constructed by these formulas, have jumps, diagrams of shear forces 
represents smooth curves. 

Based on the decisive equation for the sandwich plate with a weak shear stiffness 

ܤ2  ቀℎ + ௧ଶቁଶ ∇ସݓ + ቀ1 − ஻௛ீయ ∇ଶቁ ݓଶ∇ܦ2) + ܲ) = 0, (21) 
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then, due comparing it with a biharmonic equation for the single-layer plate and presenting as a double 
trigonometric series function, is possible to obtain the value of the reduced cylindrical stiffness: 

௖௥ܦ  = (௠௡)మቂଵାಳ೓ಸయ(௠௡)మቃଶ஻ቀ௛ା೟మቁమ(௠௡)మାቂଵାಳ೓ಸయ(௠௡)మቃଶ஽(௠௡)మ,   (22) 

where (݉݊) = ቀ݉݊ܽቁଶ + ቀܾ݉݊ቁଶ ; 
where a, b – are the dimensions of the rectangular plate; 

m=1, 3, 5, ⋯; 
n=1, 3, 5, ⋯ − are the an odd positive integers of natural sequence. 

 For taking into account the single cut parallel to, for example, of axis y, let’s represented accordingly 
of [2] the angle of rotation of the tangent to the deformed surface as 
∗ଵߛ  = ଵߛ −  ௬௬,  (23)ܪ௫ܪଵߛ∆
where ∆ߛଵ−is the break angle of the deformed middle surface on the fracture line, ܪ௫ = ݔ)ܪ − ௬௬ܪ ;(ଵݔ = ݕ)ܪ − (ଵݕ − ݕ)ܪ −  (ଶݕ
of Heaviside function. 
 Substituting (23) in the equation of equilibrium of an infinitesimal element with taking into account 
the differential geometric relationships and elasticity ratios for bending plates leads to the following 
decisive equation ∇ସݓ = ௉஽೎ೝ + ൫∆ߛଵߜ௫ᇱᇱ + ଵ௬ᇱᇱߛ∆ ௬௬ܪ௫൯ߜ + ଵ௬ᇱߛ∆ ,௬௬ߜ௫ߜ (24)  (24) 

where ߜ௫ = ݔ)ߜ −  .ଵ) − is the delta functionݔ
 The equation of critical state in the conditions of longitudinal buckling would be obtained, if the 
load Р  represent as  ܲ = − ଵܶݓ௫ᇱᇱ − ௫௬ᇱᇱݓ2ܵ − ଶܶݓ௬ᇱᇱ,    (25) 
where ଵܶ, ଶܶ, S – are the contour compressive and shear loads. 
 The coefficient ∆ߛଵ is determined from the condition to equality to zero of bending moment on the 
cut edge  
௫ᇱᇱݓ௖௥൫ܦ  + ௬ᇱᇱ൯ݓߤ = ݔ 0 = ݕ ;ଵݔ < ݕ <  ଵ.  (26)ݕ
 As an example, let’s consider the plate, compressed in a direction perpendicular to the cut line. 
Assuming hinged movable supporting on the contour, let’s represent the required functions as 
ݓ  = ∑ (ݔ)௠ݓ sin ଵߛ∆ ;ݕ௡ߚ = ∑ ଵ௡ߛ∆ sin  (27)  ,ݕ௡ߚ̅

where 
b
n

n
πβ = ; 

b
n

n
πβ = ; ܾ′ = ଶݕ −  .ଵ – is the cut lengthݕ

 Substituting (25) and (27) to (24) and using the procedure of the Bubnov-Galerkin method, we 
obtain for п=1 

 ቀ ௗ²ௗ௫మ − ଵଶቁଶߚ (ݔ)ଵݓ = భ்஽೎ೝ ଵଶߚ(ݔ)ଵݓ + ௫ᇱᇱߜଵ௡൫തܾଵߛ∆ + തଵ൯ܤ௫ߜ + ,ଵܣଵ௡ߛ∆ (28) (28) 

where തܾଵ, ܤതଵ and ܣଵ — are the constant coefficients. 
 The solution of equation (28) will be as 
(ݔ)ଵݓ  = (ݔ)଴ଵݓ +  ଵ݂ଵ̅,  (29)ߛ∆
where ݓ଴ଵ(ݔ) –еis the solution of equation  ቀ ௗ²ௗ௫మ − ଵଶቁଶߚ (ݔ)ଵݓ = ஽் . (30)    (30) 
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and it can be represented as a double trigonometric series. The functions f ℓ k  and ݂ℓ̅௞ are solutions of 
the equations accordingly 

 
ቀ ௗ²ௗ௫మ − ଵଶቁଶߚ ℓ݂௞ = ൫ߜ௫ᇱᇱᇱ − ௫ᇱߜ௞ଶߚ2̅ ൯ܾ௞ℓ + ௫,ቀܪത௞ℓܤ ௗ²ௗ௫మ − ଵଶቁଶߚ ݂ℓ̅௞ = ൫ܾ௞ℓߜ௫ᇱᇱ − ௫ߜ ௞ℓ൯ܤ    (31) 

and according to [13] are expressed by discontinuous functions. 
 Substituting (29) in the conditions on the cut edge (26) and using the procedure of the Bubnov-
Galerkin method, we obtain together with (8) a system of homogeneous algebraic equations for the 
unknowns ݓ଴ଵℓ,  ଵ௞. From the equality to zero of the determinant is obtained the expressionߛ∆ ,ℓݓ∆ 
for the critical load. By introducing discontinuous functions fkℓ, ݂௞̅ℓ the series in expression (27) 
converges so rapid that in practical calculations is sufficient of one term of series. Then, from the 
equality to zero of the determinant we obtain  

 ௖ܶ௥ = ஽೎ೝగమ௕మ ൫ଵା௞భమ൯మ௞భమ ݇ଶ,   (32) 

where 
a
bk =1  − is the ratio of the plate sides; k2 – is the coefficient depending on the size and location 

of the cut. 
 Because the 

 ௖ܶ௥଴ = ஽೎ೝగమ௕మ ൫ଵା௞భమ൯మ௞భమ    (33) 

is the value of ௖ܶ௥଴  for continuous plate, coefficient 02
cr

cr

T
Tk = characterize a reduction of critical load, 

caused by a cut. 

 3 CONCLUSION 

Are compiled and studied the systems of differential equations that gives the possibility on a unified 
basis, in terms of non-linear deformations to investigate the mode of deformation for the class with 
having the ribs, breaks, concentrated supports structures. Are compiled various simplified versions of 
these equations with application of generalized functions. The design model reflects applied in the 
engineering structural elements. 

 Are developed the methods of calculation of have irregular lamellar structures in a conditions 
of linear and nonlinear deformation that provide the opportunity to identify with the same precision 
stresses and moments in the continuum area, as well as in adjacent of ribs. 
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