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Abstract 

There are characteristics that uniquely define the properties of dynamical systems from the 
point of its dynamical response. For example, natural frequencies and natural modes or frequency 
response functions can be assigned to these characteristics.  Determination of these characteristics is 
fixed on the selection of computational model and on the means of structure excitation. This 
contribution discusses about analysis of such characteristics. 
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 1 INTRODUCTION 
Dynamical analysis of the structures depends on the choice of computational model and on the 

means of structure excitation. In practice it is often used the discrete computational model, because 
the motion equations for such model have character of ordinary differential equations. Computational 
model can be chosen on the basis of classical dynamics or on the basis of finite element method.  
Structure excitation can be force or kinematic. When choosing discrete computational model and the 
force excitation with variable frequency content, it is useful to use frequency response functions as 
characteristics describing properties of dynamical system. The presented article is devoted to the 
analysis of such characteristics. 

 2 FOURIER TRANSFORM AND FREQUENCY RESPONSE FUNCTION 
For the transmission from time to frequency domain the Fourier transform can be used [1]. Fourier 
image of a time function )(tv  we denote by )(qV , where q is real number, in our considered case      
q = ω, where ω is angular frequency in [rad/s]. The complex Fourier transform is defined as  

 
+∞

∞−

⋅⋅− ⋅⋅= ttvqV tq de)()( i .                                                            (1) 

The function )(tv  and its derivatives will be transformed as following 
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                                                              )()( qVktvk ⋅→⋅ , 

                                            )(i0)()( qVqvfortv ⋅⋅→=±∞& , 

 )(0)()()( 2 qVqvvfortv ⋅−→=±∞=±∞ &&& .                                         (2) 

Frequency response of a linear system (frequency response function H(p) for p = i·ω) is defined as 
the ratio of steady state response and harmonic excitation [2] 

tω
sst FrωH ⋅⋅⋅=⋅ ie/)i( .                                                          (3) 

If the input value (e.g., excitation force) is periodical with unit amplitude 
tωtfFtF ⋅⋅⋅=⋅= ie1)()( ,                                                        (4) 

it is possible to write the output value (e.g., deflection) as 
tωωHtv ⋅⋅⋅⋅= ie)i()( .                                                            (5) 

Graphic representation of a frequency response is said to be frequency characteristic. Graphic 
representation of a dependence of absolute value (module) of frequency response function on the 
frequency of harmonic excitation is said to be amplitude characteristic.   The phase characteristic is a 
graphic representation of a dependence of response function argument (phase) on the frequency of 
harmonic excitation. The frequency response H(i·ω) is a complex function and it can be  calculated as 
a vector sum of real Re[H(i·ω)] and imaginary  Im[H(i·ω)] parts. 

 3 FREQUENCY RESPONSE FUNCTIONS UPON FORCE EXCITATION  
Let us assume discrete computational model with n degrees of freedom (Fig. 1) excited by discrete 
forces at points of lumped masses. The motion equation describing the forced un-damped oscillations 
of system can be written in the form 

 [ ] { } [ ] { } { })()()( tFtvktvm D =⋅+⋅ &&                                                    (6) 

where [ ]Dm  is diagonal mass matrix, [ ]k  is stiffness matrix, { })(tv  is vector of unknown deflections 
of mass points and { })(tF  is vector of exciting forces. Derivatives with respect to time are denoted by 
dot over the dependent variable symbol [3]. 
 

 
 
 
 
 

Fig.1: Discrete computational model of the structure 

 Let us apply the Fourier transform to the equation (6). Fourier images of functions { })(tv  and 
{ })(tF  are denoted { })(qV  and { })(qF , respectively, where ωq = . Equation (6) is then transformed 
to 

 [ ] { } [ ] { } { })()()(2 qFqVkqVmq D =⋅+⋅⋅− .                                         (7) 
 Let us suppose that only k-th function of vector { })(qF  is nonzero and all others are equal zero. 
Now it is possible to define n2 frequency responses for i = 1 ÷ n and k = 1 ÷ n. For the frequency 
response )(,, qvv kiki ≡  it is fulfilled 

 
)(
)()(,, qF

qVqvv
k

i
kiki =≡ .                                                          (8) 

l/4  l/4  l/4  

b a 1 2 3 
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This way it is possible to obtain n systems of equations for k = 1 ÷ n, for the calculation of n 
frequency responses kiv , at each step of the solution, for i = 1 ÷ n 

                                                       [ ] { } [ ] { } { }kD Fvkvmω =⋅+⋅⋅− )2 , 

 [ ] [ ]( ) { } { }kD Fvmωk =⋅⋅− )2 .                                                     (9) 

Vector { }kF  for the k-th system of equations is zero except the k-th row, where it is number one. 

 4 NUMERICAL SOLUTIONS 
Numerical calculations were applied to discrete computational model of real bridge structure 

with one span, made from bridge prefabricated elements I73 with the following parameters: span l = 
29,0 m, elastic modulus E = 3,85·1010 N/m2, quadratic moment of the cross-section I = 2,391711 m4, 
intensity of mass μ = 19 680 kg/m. Masses of discrete model with 3 degrees of freedom are following 

1426804/29196804/321 =⋅=⋅=== lμmmm  kg.  

Stiffness matrix elements are  
9

3311 109615402,38180641 ⋅== kk  N/m,  
9

22 107290993,31381762 ⋅=k N/m, 
9

32232112 108762562.27824961 ⋅−==== kkkk N/m, 9
3113 106755909,32011207 ⋅== kk  N/m. 

Natural frequencies of the model are 
Hz0389,4)1( =f , Hz0432,16)2( =f , Hz0633,34)1( =f . 

Frequency response functions computations were realized in the frequency range 0 ÷ 40 Hz 
with step 0,1 Hz and there are displayed in the form of amplitude and phase characteristics. For the 
excitation in point k = 1 there are displayed in figures 2, 3, 4, for the excitation in point k = 2 there are 
displayed in figures 5, 6, 7 and for the excitation in point k = 3 there are displayed in figures 8, 9, 10. 

Fig.2: Amplitude and phase characteristics of FRF in point 1, excitation in 1 

0 5 10 15 20 25 30 35 40
0

2

4

6
x 10-6 Ampl. char. of FRF in point 1, excitation in 1,  |v1,1|  3 df, da

Frequency f  [Hz]

|v 1,
1|  

[m
/N

]

0 5 10 15 20 25 30 35 40
-4

-3

-2

-1

0
Phase char. of FRF in point 1, excitation in 1, |fiv1,1|  3 df, da

Frequency f  [Hz]

fiv
1,

1  [
ra

d/
N

]



150 

 
Fig. 3: Amplitude and phase characteristics of FRF in point 2, excitation in 1 

Fig. 4: Amplitude and phase characteristics of FRF in point 3, excitation in 1 
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Fig. 5: Amplitude and phase characteristics of FRF in point 1, excitation in 2 

 
Fig. 6: Amplitude and phase characteristics of FRF in point 2, excitation in 2 
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Fig. 7: Amplitude and phase characteristics of FRF in point 3, excitation in 2 

 
Fig. 8: Amplitude and phase characteristics of FRF in point 1, excitation in 3 
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Fig. 9: Amplitude and phase characteristics of FRF in point 2, excitation in 3 

 
Fig. 10: Amplitude and phase characteristics of FRF in point 3, excitation in 3 
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 5 CONCLUSIONS 
Frequency response functions (FRF) are important characteristics that uniquely define 

properties of dynamical systems. They are linked to the choice of computational model and the means 
of structure excitation. It is possible to compute them in several ways, e.g., to use the Fourier 
transform for the transmission from time to frequency domain. Using of presented technique is 
possible when solving various dynamical problems [4-9]. From the presented results it can be seen 
that values of dominant frequencies are f(1) = 4,04 Hz, f(2) = 16,04 Hz, f(3) = 34,06 Hz. From the 
theoretical point of view the amplitude characteristic of un-damped system at natural frequencies can 
reach infinity large values, what can cause problems in numerical solutions. Un-damped system 
oscillates in the phase or in anti-phase. Angle of phase deviation is then 0 or π. On the basis of 
Maxwell principle of reciprocal deflection kiik vv = . In the case in question we considered 

symmetric structure with axis of symmetry in point 2. Because of symmetry it is valid 3311 vv = . 
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