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Abstract. The paper is focused on the technique of linear 
transformation between correlated and uncorrelated 
Gaussian random vectors, which is more or less commonly 
used in the reliability analysis of structures. These linear 
transformations are frequently needed to transform 
uncorrelated random vectors into correlated vectors with 
a prescribed covariance matrix (coloring transformation), 
and also to perform an inverse (whitening) transformation, 
i.e. to decorrelate a random vector with a non-identity 
covariance matrix. Two well-known linear transformation 
techniques, namely Cholesky decomposition and eigen-
decomposition (also known as principal component 
analysis, or the orthogonal transformation of a covariance 
matrix), are shown to be special cases of the generalized 
linear transformation presented in the paper. The proposed 
generalized linear transformation is able to rotate the 
transformation randomly, which may be desired in order 
to remove unwanted directional bias. The conclusions 
presented herein may be useful for structural reliability 
analysis with correlated random variables or random 
fields. 
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1. Motivation 

Uncertainty quantification or probabilistic engineering 
analyses such as statistical, sensitivity or reliability 
analyses must often consider statistical dependencies 
among random variables. Whatever joint distribution 
function may be considered, the only analytically tractable 
random vector with correlated marginal distributions is 
multivariate Gaussian distribution, and the real problem 
with possibly non-Gaussian marginals is that they must 
often be transformed into Gaussian random vectors (we 

recall transformation methods such as Nataf or Rosenblatt 
transformation [1]).  

 An analyst using reliability methods must often make 
decisions performed with incomplete probability 
information. Indeed, in many practical cases, only the 
estimated correlation or covariance matrix is specified 
along with marginal distributions for individual random 
variables. In such a case, the information about the joint 
probability distribution function is not complete and one 
has to construct a density that fulfills this incomplete 
information. A solution is to have an underlying Gaussian 
random vector. This is a typical example where the 
normal-to-anything transformation (NORTA), sometimes 
known as the Nataf transformation, which is a special case 
of Rosenblatt transformation that considers the Gaussian 
copula, is used to construct the joint probability density of 
the random vector.  

 We also note that mathematical operations involving 
multivariate Gaussian random vectors are almost the only 
generally applicable tools currently available. Most of the 
methods from reliability engineering require two-way 
access from/to the transformed space of uncorrelated 
Gaussian random variables [2]. One can mention methods 
like Importance sampling, Asymptotic sampling, First 
Order Reliability Method (FORM) and Second Order 
Reliability Method (SORM), etc. Last but not least, most 
of the methods for the generation and analysis of random 
fields are based on linear transformations between 
uncorrelated and correlated Gaussian random vectors. 

 One of the simplest applications of linear 
transformation is the generation of realizations from a 
correlated random vector using Monte Carlo type 
simulation techniques, which is commonly used in 
practical applications of structural reliability analysis. The 
aim of this study is to review and compare available 
transformation techniques and the development of the 
generalized linear transformation technique. In the 
following section, the basic mathematical principle behind 
the linear transformation of Gaussian random vectors is 
presented. 
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2. Linear Transformation 

Let Z ∼ N (0, I) be the Gaussian random column vector 
for which the expected value E[ZiZj] = δij, so the columns 
of Z are uncorrelated standard variables. We would like to 
transform Z into a Gaussian random vector X ∼ N (0, Σ), 
where Σ = E[XXT] is a target covariance matrix which is 
symmetric and positive definite.  

 A linear transformation maps from n-dimensional 
space to m-dimensional space. For simplicity, we shall 
start with a linear transformation between spaces of the 
same dimension: 

  : n nT R R . (1) 

 The linear transformation of Z X  (coloring) using 
a regular square transformation matrix A of order n then 
reads: 

  X = AZ . (2) 

 The inverse transformation (whitening) is simply 
1Z = A X . In order to establish the transformation, one 

has to determine a suitable transformation matrix A [3], 
based on the covariance matrix Σ.  

 There are two well-known choices for A that will be 
reviewed next: a transformation based on the Cholesky 
decomposition of Σ or on the eigen-decomposition of Σ. 

 The geometric properties of the transformation are 
given by matrix A, as can be seen from Eq. (2). It is clear 
that both vectors can be rotated, stretched or flipped.  

3. Cholesky Decomposition 

The target covariance matrix can be decomposed using 
a lower triangular (Cholesky) matrix L as: 

  TΣ LL . (3) 

 The coloring linear transformation with chol A L  

obtained by Cholesky Σ then reads: 

  chol X = A Z LZ . (4) 

 This transformation guarantees that the uncorrelated 
vector Zgets transformed into X with the desired 
covariance matrix: 

 
  TT T T

T T T .

               
     

XX LZ LZ L ZZ L

L ZZ L LL Σ
 (5) 

The backward transformation is obtained easily as  

  1Z L X . (6) 

 In order to visualize the transformation, a numerical 
example is presented that involves two independent 
standard Gaussian random variables (vector Z) that are 

transformed into standard Gaussian random vectors with 
covariance matrix Σ   (in fact a correlation matrix because 
of standardized random variables). Given the target 
correlation matrix 

  
1

1



 

  
 

Σ , (7) 

the Cholesky matrix reads 

  
2

1 0

1 

 
  

  
L . (8) 

 An explanatory illustration of the Cholesky linear 
transformation for the two-dimensional case is depicted in 
Fig. 1 for correlation coefficient 0.6   . Note that the 

transformation matrix L is a lower triangular matrix with 
a unit on the first entry of the main diagonal, and therefore 
the first coordinate x1 remains unchanged. 

4. Eigen-decomposition 

The decomposition of a symmetric positive definite matrix 
into eigenvectors and eigenvalues is usually called eigen-
decomposition. The method is applied under many 
different names, such as proper orthogonal decomposition, 
principal component analysis, orthogonal transformation 
of a covariance matrix, the main ingredient of the 
Karhunen-Loève expansion, etc.  Any positive definite 
matrix can be decomposed as 

  
T

eig eig

T 1/ 2 1/ 2 T  
A A

Σ Φ λ Φ Φ λ λ Φ  , (9) 

where λ  is the diagonal matrix of (positive) eigenvalues 

of Σ (best if ordered from largest to smallest) and Φ is 

the eigenvector matrix associated with the eigenvalues. 
Individual eigenvectors of  Σ are orthogonal (recall the 

symmetry of Σ) and they form columns of Φ . The 
coloring linear transformation with Aeig obtained by the 
eigen-decomposition of Σ reads: 

   1/2
eig X = A Z Φλ Z . (10) 

The backward transformation is obtained easily as  

    11/2 1/2 T Z = Φλ X λ Φ X . (11) 

In this equation, the fact that the inverse of an orthogonal 

matrix is the transposed matrix 
1 T Φ Φ  can be used. 

Also, the diagonal matrix 
1/2λ  has the inverse square 

roots of eigenvalues on the main diagonal. Having Φ and 

λ  at hand, the backward transformation is simple. 

 To show that transformation (10) yields the required 
covariance matrix, one can substitute for Σ as follows: 
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Fig. 1: Linear transformations of the original sample from Z (left), selected as an orthogonal grid of points. The sample of X is obtained from Z using: 
Cholesky decomposition (middle) and eigen-decomposition (right). 
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 (12) 

 eigen-decomposition has several advantages. First of 
all, the transformation of realizations to correlated space X 
keeps the original pattern from uncorrelated space Z. This 
is illustrated using realizations of 2D vectors in Fig. 1 
right. The solution to the eigenvalues and the associated 
orthonormal eigenvectors of the 2D correlation matrix in 
Eq. (7) is particularly simple: 

 
1 0 1 / 2 1 / 2

,
0 1 1 / 2 1 / 2




      
                   

λ Φ . (13) 

 For computational purposes, a significant advantage of 
this method is the possibility of dimensional reduction 
using the transformation. The sum of eigenvalues is equal 
to the trace of Σ (denoted as tr(Σ)), thus each eigenvalue 
represents information about variance carried by the 
corresponding eigenmode. If dimensionality reduction is 
required, it is possible to choose such eigenmode 
(variable) vectors associated with the largest eigenvalues 
that their sum forms a sufficient portion of tr(Σ) and the 
rest of the eigenmodes can be ignored. Usually, taking 
0.95tr(Σ) suffices as it represents the 95% variability. 

5. Generalized Transformation 

Linear transformation can be generalized using 
eigenvalues and eigenvectors, which represent the 
principal directions – the axes of the ellipsoid. One can 
show that the desired covariance matrix can be 
decomposed as: 

  

T
eig eig

T
gg

1/2 T 1/2 T T T
eig eig .     

A A I

AA
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  (14) 

where K is an arbitrary orthogonal matrix. To show that 
such a transformation yields the required covariance 
matrix is simple: 
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 (15) 

 In other words, the generalized transformation matrix 
Ag is obtained using eigA by post-multiplication with an 

arbitrary orthogonal matrix and therefore establishes 
infinitely many possible transformation matrices between 
the correlated space X and the uncorrelated Z-space: 

   1/2
g X = A Z Φλ K Z . (16) 

The backward (whitening) transformation to uncorrelated 
space is then: 

   1 T 1/2 T
g
 Z = A X K λ Φ X . (17) 

 The only difference between gA  and eigA lies in the 

post-multiplication by an orthogonal matrix which 
represents a unitary transformation (rotation). This 
rotational freedom can be extremely important in 
problems where the sample being transformed has a 
pattern that might interact with other features of the 
problem. The option of removing such an undesired 
pattern can help to eliminate bias that might lead statistical 
or reliability analyses to produce systematically erroneous 
results. Figure 2 displays an illustration of the 
generalization of linear transformation in 2D, where 
random orthogonal matrices K are used.  

 The method for generating uniformly random 
orthogonal matrices can be found e.g. in [4]. As can be 
seen in Fig. 2, the choice of the orthogonal matrix K 
defines the position of the given realization on the same 
ellipsis. The ellipsis represents points at the same 
Mahalanobis distance. 
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Fig. 2: Generalized linear transformations of the original sample from Z (left), selected as an orthogonal grid of points into various samples of X 

obtained using 4 random orthogonal matrices (middle) and 100 random orthogonal matrices (right). The realizations are at the same 
Mahalanobis distance. 

 The Mahalanobis distance D is a multi-dimensional 
measure of the distance of a point from the mean value 
expressed as the number of standard deviations. In 
structural reliability analysis (e.g. the First Order 
Reliability Method) it is common to use reliability index 
β, which is defined as the shortest distance from the origin 
to the design point in uncorrelated standard normal space. 
Distance D can be then viewed as the extension of β to 
correlated normal space: 

 T T 1( (      β D Z Z X μ Σ X μ . (17) 

 A graphical interpretation of Mahalanobis distance in 
FORM is presented in Figure 3, where the original limit 
state function f(X) is transformed to Z space by both 
methods. As can be seen, the position of the design point 
is different but the Mahalanobis distance is identical, 
which is crucial for reliability analysis. Note that D is 
reduced to common Euclidean distance in Z space. 

6. Special Cases of Generalized 
Linear Transformation 

In this section, we will show that both commonly used 
transformation techniques, which specifically use either 
the Cholesky matrix or eigen-decomposition, can be 
viewed as special cases of the generalized transformation 
introduced in the previous section.  

 Since the choice of orthogonal matrix K is arbitrary, 
one can take it to be the identity matrix. Then, the 
generalized linear transformation becomes the eigen-
decomposition transformation. 

 Another possibility is to take the orthogonal matrix 
K = Q, where Q is the matrix from the QR-
decomposition [3]. Indeed, considering the transposed 

transformation matrix Aeig, one can write:  

  
T 1/2 T
eig  A λ Φ QR  (18) 

Since TR L  and the orthogonal matrix is selected as 
K = Q, the following equations show that the lower 
triangular matrix from Cholesky decomposition can be 
obtained using eigen-decomposition and Q: 

  

g

g

1/2 T 1/2 T T

1/2 T 1/2 T T 1/2

1/2

 





A

IA

Σ = Φλ Q Q λ Φ = LL = LR

L = Φλ Q Q λ Φ Φ λ Q

L = Φλ Q



  (19) 

7. Conclusion 

In this paper, two well-known linear transformations of 
Gaussian random vectors are reviewed, and their 
relationships are clarified. The eigenvalue transformation 
is generalized using a random orthogonal matrix (rotation) 
in such a manner that it includes eigenvalue transformation 
and also Cholesky transformation as special cases. We 
remark that Cholesky transformation is computationally 
cheaper than eigenvalue transformation. The 
transformations find many applications in probabilistic 
modeling involving correlated random variables. One can 
name e.g. Nataf transformation to build a general non-
Gaussian joint distribution function, FORM and SORM, 
the generation of random fields and many others. The 
possibility of rotating the transformation randomly may be 
desired in order to remove unwanted directional bias of the 
eigenvalue transformation that might lead statistical or 
reliability analyses to produce systematically erroneous 
results.
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Fig. 3: The Mahalanobis distance in correlated (left) and uncorrelated space. The design point is transformed by Cholesky (middle) and eigen (right) 
decomposition-based transformation. 
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