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Abstract. The inverse identification of the parameter 
values of nonlinear material models, which have been 
developed for, inter alia, concrete modelling, is currently a 
process that is widely used and investigated in the field of 
research and development. Today there are several 
approaches that can be employed for the inverse 
identification process. One of the most significant of these 
approaches involves the use of optimisation algorithms 
which, however, often demonstrate varying levels of 
precision and efficiency within specific tasks. These 
aspects are the subject of the research presented in this 
contribution. 
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1. Introduction 

The modelling of continuum mechanics tasks using 
nonlinear mechanics tools is currently the main area of 
focus at many scientific institutions ([1], [2], [3] and [4]). 
The term “use of nonlinear mechanics tools” refers in 
particular to the use of geometric and material (physical) 
nonlinearities within continuum mechanics tasks. The 
necessity of using geometric or material nonlinearities 
within numerical calculations is dependent on the type of 
structure in question and particularly on the selected 
material from which it will be made. Modern 
computational systems based on the finite element method 
([5], [6], [7] and [8]), which are currently seeing 
widespread use in the investigation of continuum 

mechanics tasks, contain a series of methods for the 
consideration of the nonlinear behaviour of structures, 
along with many nonlinear material models that can be 
employed to describe the behaviour of practically any 
material in the context of numerical simulations. However, 
the application of nonlinear material models within 
calculations of a numerical nature gives rise to a 
fundamental difficulty in terms of the necessity to define 
the parameters of these models correctly in order for them 
to function properly. This task often is not very easy as 
nonlinear material models (and nonlinear material models 
of concrete in particular) very often include parameters of 
a purely mathematical nature or parameters which can only 
be derived using special experimental data. If relevant data 
which would enable the values of the material model’s 
parameters to be derived directly are not available, the 
process of the inverse identification of material parameter 
values can currently be used to deal with this problem ([9], 
[10], and [11]). 

 During inverse identification, output data usually 
consisting of experimental data are generally used to 
obtain values for material and other parameters. The 
inverse identification process is therefore based on the 
combination of experimental data with numerical 
calculations and identification approaches. The goal is to 
obtain the best possible approximation of experimental 
data from numerically simulated data. The most widely 
used identification approaches today are methods based on 
the exercise of artificial neural networks [12] and 
optimisation algorithms [13]. The capability of using 
optimisation algorithms to perform the inverse 
identification of parameter values is offered by, e.g. 
optiSLang software [14], which contains a total of five 
optimisation algorithms whose efficiency and accuracy 
can vary for different tasks. 

 The aim of this paper is to investigate the efficiency 
and accuracy of optiSLang optimisation algorithms during 
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the inverse identification of values for a small quantity of 
parameters of the modified version of a nonlinear material 
model of concrete known as the Continuous Surface Cap 
Model, which is implemented in the explicit finite element 
computational system LS-Dyna [15]. For this purpose, a 
task in the form of a four-point bending test is carried out 
on a high, steel-reinforced concrete beam. To achieve the 
set goal, the application of this concrete model and other 
material models within the computational model of a test 
created in LS-Dyna is required as well as the use of 
experimental data obtained from a real four-point bending 
test. These aspects are described in the following chapters. 

2. Material Models 

A total of three material models implemented in the LS-
Dyna programme were used in the computational model of 
the four-point bending test. A modified version of the 
Continuous Surface Cap Model was used to model the 
behaviour of the high concrete beam. The behaviour of the 
concrete reinforcement was modelled using the Plastic 
Kinematic Model and the behaviour of the washers was 
modelled using the Linear Elastic Model. 

2.1. The Continuous Surface Cap Model 

The Continuous Surface Cap Model ([16] and [17]) is a 
nonlinear material model of concrete based on elasto-
plastic constitutive theory. The occurrence of plastic 
deformations is, within the model, controlled by the 
achievement of a yield surface [18] whose functional 
relationship can be expressed as: 

  2 2
1 2 3 2 3 1 1( , , ) ( ) ( ) ( , ),f cY I J J J J F I F I κ= −ℜ  (1) 

where the second member on the right side of the equation 
is a combination of the shear failure function Ff (I1) and the 
hardening model Fc (I1,κ) via a multiplicative formulation. 
The shear failure function and the hardening model can be 
expressed mathematically as: 
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 The description of the parameters contained in Eqs. 
(1)-(7) is as follows: I1 is the first invariant of the stress 
tensor, J2 and J3 are the second and third invariants of the 
deviatoric part of the stress tensor, ℜ(J3) is the reduction 

factor according to Rubin, κ is the hardening parameter, α, 
β, λ, and θ are material constants which are derived from 
the experimental testing of concrete in triaxial 
compression, and R is the ratio parameter of the hardening 
model. 

 As the Continuous Surface Cap Model is part of an 
explicit finite element solver, it enables the effect of the 
strain rate on the stress state to be considered within its 
formulation. However, this ability of the model can be 
neglected during the calculations via the pertinent setting 
of the model parameter IRATE (IRATE = 0: calculation 
with the effect of the strain rate on the stress state → the 
viscous component of the model is switched off; IRATE = 
1: calculation with the effect of the strain rate on the stress 
state → the viscous component of the model is switched 
on). It can be concluded from the above facts that if the 
parameter IRATE equals zero, the numerically simulated 
response of the model corresponds to static (slow) loading, 
which means that it is independent of the velocity of 
loading used. For this reason, the Continuous Surface Cap 
Model can be used not only for the numerical modelling of 
the dynamic loading of concrete structures but also to 
model the quasi-static or static loading of concrete 
structures. Within the study described in this paper, the 
parameter IRATE equals zero was used because the static 
response of the structure was modelled. In order to prevent 
the dependence of numerical simulation results on the 
finite element mesh, an algorithm is implemented in the 
material model which is based on the principle of the crack 
band model and thus fulfils the function of a localisation 
limiter. 

 The modified version of the Continuous Surface Cap 
Model includes, above and beyond the basic version (25 
material parameters), a total of 3 material parameters 
whose numerical values must be defined. The values of the 
other parameters are generated automatically based on the 
values of these three parameters. On the basis of the 
inverse identification of the values of these three 
parameters, the efficiency and accuracy of selected 
optimisation algorithms were tested in this paper. 
Descriptions and used units are listed for the parameters of 
the modified version of the Continuous Surface Cap Model 
in Tab. 1 [15]. 
 
Tab.1: Material parameters of the modified version of the Continuous 

Surface Cap Model. 

Parameter Description of the parameter Unit 

RO Mass density. Mg/mm3 

FPC Unconfined uniaxial compressive strength. MPa 

DAGG Maximum aggregate size. mm 
  

2.2. The Plastic Kinematic Model 

The Plastic Kinematic Model is a bilinear model based on 
elasto-plastic constitutive theory. It is suitable for 
modelling the behaviour of construction steel or steel 
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rebar, or to model the behaviour of plastic material that 
behaves in a similar manner to steel. The model enables 
the modelling of a material with hardening, which can be 
isotropic or kinematic, or without hardening. As the model 
is part of an explicit finite element solver, it includes the 
viscous behavioural component. It thus enables, within its 
formulation, the consideration of the effect of the strain 
rate on the stress state. However, this ability of the model 
can be neglected by using zero values for the relevant 
parameters, as is the case with the Continuous Surface Cap 
Model. 

 In calculations carried out for this paper, the viscous 
component of the model was neglected because the static 
response of the structure was modelled, and the 
formulation of the model without hardening was used. The 
descriptions and units used for the material parameters of 
the Plastic Kinematic Model, whose values needed to be 
defined, are listed in Tab. 2 [15]. 
 
Tab.2: Material parameters of the Plastic Kinematic Model. 

Parameter Description of the parameter Unit 

RO Mass density. Mg/mm3 

E Young’s modulus of elasticity. MPa 

PR Poisson’s ratio. - 

SIGY Yield strength. MPa 

ETAN Tangent modulus (ETAN = 0: material without 
hardening). MPa 

  

2.3. The Linear Elastic Model 

As a more detailed material model was not needed for the 
modelling of the behaviour of the washers, the Linear 
Elastic Model, or in other words a constitutive model 
respecting generalised Hooke’s Law, was used for this 
purpose. The descriptions and units used for the material 
parameters of the Linear Elastic Model, whose values 
needed to be defined, are listed in Tab. 3 [15]. 
 
Tab.3: Material parameters of the Linear Elastic Model. 

Parameter Description of the parameter Unit 

RO Mass density. Mg/mm3 

E Young’s modulus of elasticity. MPa 

PR Poisson’s ratio. - 
  

3. Experimental Data and the 
Computational Model 

3.1. Experimental Data 

The experimental data used in this paper are the results of 

a four-point bending test carried out on a high, steel-
reinforced concrete beam. This test was carried out and 
described within [19]. A schematic representation of the 
test can be seen in Fig. 1. It shows the geometry of the 
concrete beam together with the geometry and location of 
the reinforcing bar and the washers at the points where the 
loading and support of the beam took place. The material 
parameters of the hardened (28 days old) concrete and steel 
rebar were the following, as stated in [19]: 

Parameters of the concrete: 

• Modulus of elasticity: 20.68 GPa, 

• Poisson’s ratio: 0.15, 

• Uniaxial compressive strength: 24.13 MPa, 

• Uniaxial tensile strength: 3.10 MPa. 

Parameters of the steel rebar: 

• Young’s modulus of elasticity: 210.00 GPa, 

• Yield strength: 344.75 MPa, 

• Cross-sectional area of the reinforcing bar: 
0.71x10-4 m2. 

 
Fig. 1: Schematic representation of the four-point bending test. 

 
Fig. 2: Measured experimental data. 

 As shown in Fig. 1, the beam was loaded with forces P 
during the test. The intensity of the forces increased 
linearly over time until 80 kN was achieved. The velocity 
of loading was very slow, thus the loading was static. 
During the test, the vertical displacement (deflection) of 
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beam U was measured at midspan. The exact location 
where the deflection of the beam was measured is marked 
with point B in Fig. 1. The measured experimental data are 
shown in Fig. 2. 

3.2. Computational Model 

The computational model of the four-point bending test 
was created in LS-Dyna programme, during which the test 
scheme from Fig. 1 was respected. The computational 
model required the creation of finite element models of the 
high beam, reinforcing bar and washers, and the boundary 
conditions (supports and loading) had to be defined. 

 The finite element model of the beam was created 
using 3D eight-node explicit structural finite elements. The 
finite element mesh forming the model of the beam was 
regular (see Fig. 3). As the inverse identification process 
required the repeated execution of numerical simulations 
of the task, the symmetry of the task was exploited (only 
half of the beam was modelled) and the consistence of the 
finite element mesh of the beam model was chosen in such 
a way that the time required for the calculation was not too 
high, which it might otherwise have been due to the use of 
an explicit finite element algorithm. 

 The reinforcing bar was modelled using 3D two-node 
explicit beam finite elements. The consistence of the beam 
finite element mesh was adapted to the finite element 
model of the beam in such a way that continuity between 
the beam and the reinforcing bar model was ensured. The 
dimensions of the rectangular cross section of the beam 
finite elements were entered in such a way that the 
resultant cross-sectional area corresponds to the value 
from the experiment (0.71x10-4 m2) which is a part of this 
paper. 

 The washers were modelled using 3D eight-node 
explicit structural finite elements. The size of the finite 
elements forming the models of the washers corresponded 
to the size of the finite elements forming the model of the 
beam (see Fig. 3). 

           
Fig. 3: Finite element model of the investigated task. 

 The boundary conditions were, within the 
computational model of the investigated task, defined in 

the places where washers were located and on the axis of 
symmetry of the high beam. The model of the bottom 
washer had its boundary conditions defined in such a way 
that its displacement was prevented in the horizontal and 
vertical direction. The model of the top washer had its 
boundary conditions defined in such a way that its 
displacement was prevented only in the horizontal 
direction because of the application of loading. At the 
location of the axis of symmetry, the symmetric boundary 
conditions were defined for the model of the beam. 
Loading was applied to the model of the top washer in the 
form of pressure linearly increasing over time with a final 
force of 80 kN. Loading was also applied by considering 
the structure’s self-weight. 

4. The Inverse Identification Process 

4.1. Global Optimisation and the 
Optimisation Algorithms Used 

For this paper, “global optimisation” was used in order to 
execute the inverse identification of the values of the 
parameters of the concrete material model. The aim of 
global optimisation was to find values for those parameters 
whose identification were required and whose application 
would result in numerically simulated data displaying the 
smallest possible deviation from the experimental data 
used. This would represent the “reference response” within 
the inverse identification process. In other words, the 
global minimum for the selected objective function was 
sought, along with optimal values for the identified 
parameters [13]. Global optimisation was carried out using 
optimisation algorithms in the optiSLang programme, 
during which their accuracy and efficiency were evaluated. 
During the optimisation, the selected objective function 
which characterised the calculation of the Root-Mean-
Square Deviation (RMSD) was thus minimised. Its 
mathematical expression was defined by the equation: 

  
( )2

,
1 min,

n

calc i ref,i
i

U U
RMSD

n
=

−
= →


 (8) 

where Ucalc,i was substituted by numerically simulated 
vertical displacement (deflection) values corresponding to 
the pertinent loading force values and Uref,i was substituted 
by reference (experimentally measured) vertical 
displacement values corresponding to the same loading 
force values. Parameter n equalled the number of data 
defining the resultant shape of the experimental loading 
curve in Fig. 2 (n = 32). 

 As suggested above, the identified parameters were 
only parameters of the Continuous Surface Cap Model. 
The parameters of other material models used were not 
identified because of their negligible influence on the 
resultant shape of the numerically simulated loading curve, 
which was verified by test calculations. The identified 
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parameters formed, within global optimisation, a design 
vector which can be expressed as: 

  { }T, , .RO FPC DAGG=dX  (9) 

 
Fig. 4: Numerically simulated data for material parameters from the 

experiment. 

 The identified parameters entered the design vector as 
continuous random variables with a distribution of 
probability at intervals given by defined boundary values. 
The limit values of the identified parameters given by the 
specification of the material model of concrete were used 
as boundary values [15] (see Tab. 4). Material parameter 
values from the experiment were used as initial values for 
the identified parameters, which were necessary for the 
first generation or iteration of the relevant optimisation 
algorithm. The numerically simulated loading curve for 
these parameter values is shown in Fig. 4. Material 
parameters which were not subject to identification were 
entered deterministically using values from the experiment 
(see Tab. 5). 
 
Tab.4: Initial and boundary values of identified parameters. 

Parameter Unit Initial value 
Minimum 
boundary 

value 

Maximum 
boundary 

value 

RO Mg/mm3 2.400x10-9 2.100x10-9 2.450x10-9 

FPC MPa 24.13000 20.00000 58.00000 

DAGG mm 16.00000 8.00000 32.00000 
  

 
Tab.5: Parameter values for the material models which were not subject 

to identification. 

Parameter Unit Plastic Kinematic 
Model Linear Elastic Model 

RO Mg/mm3 7.850x10-9 7.850x10-9 

E MPa 210000 210000 

PR - 0.3 0.3 

SIGY MPa 344.750 - 

ETAN MPa 0 - 
  

 The inverse identification process using optimisation 

algorithms required the repeated execution of numerical 
simulations of the investigated task, during which the 
objective function was minimised. The necessary number 
of repetitions (or in other words the necessary number of 
generations or iterations) performed to find the global 
minimum of the objective function to which the optimal 
values of the identified material parameters would 
correspond differed greatly for the different optimisation 
algorithms (see Tab. 6). For the purposes of this paper a 
total of five optiSLang optimisation algorithms (briefly 
described below) were used in order to study their 
efficiency and accuracy. 

Non-Linear Programming by Quadratic Lagrangian 
(NLPQL) 

 NLPQL ([14] and [20]) is a sequential algorithm based 
on nonlinear quadratic programming. This optimisation 
algorithm is suitable for the solution of tasks which utilise 
smooth, continuous as well as differentiable objective 
functions and constraints. The algorithm utilises quadratic 
approximation of the Lagrangian function and the 
linearization of constraints. 

Simplex Method (Simplex) 

 The Simplex Method ([14] and [21]) is an iterative 
optimisation algorithm based on linear programming 
which is executed systematically with the purpose of 
determining an optimal solution from a set of feasible 
solutions. The method is suitable for the optimisation of a 
low number of parameters. 

Adaptive Response Surface Method (ARSM) 

 ARSM ([14] and [22]) is a direct optimisation 
algorithm suitable for the optimisation of both low and 
high numbers of parameters. The main advantage of the 
algorithm is the fact that it provides an overview of the 
behaviour of an objective function within the whole design 
space, it allows the simple inclusion of additional 
requirements into the objective function, and it also 
requires a relatively small number of design points. 

Evolutionary Algorithm (EA) 

 The Evolutionary Algorithm ([14] and [23]) is one of a 
group of optimisation algorithms that utilise processes 
inspired by biological evolution (i.e. occurring in the 
natural world), such as mutation, reproduction and 
recombination. The Evolutionary Algorithm included in 
optiSLang programme is specifically based on the 
combination of a genetic algorithm with an evolution 
strategy. 

Particle Swarm Optimisation (PSO) 

 PSO ([14] and [24]) is one of a group of optimisation 
algorithms inspired by natural phenomena. To be specific, 
PSO is a method whose algorithm is inspired by and tries 
to imitate the behaviour of flocks of birds looking for food. 

4.2. Results and Their Evaluation 
A table comparison of the results obtained from global 
optimisation from five different optimisation algorithms is 
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shown in Tab. 6. To be specific, Table 6 shows the resultant 
optimal values of identified parameters of the modified 
version of the Continuous Surface Cap Model obtained 
from the best generations or iterations of the optimisation 
algorithms, including the relevant minimum values of the 
objective function which determine the accuracy of the 
individual optimisation algorithms used. Furthermore, 
Table 6 also shows the number of iterations or generations 
of the optimisation algorithms necessary to find the global 
minimum of the objective function and thus also the 
optimal values of identified material parameters. These 
data determine the efficiency of the optimisation 
algorithms used. Figure 5 shows a graphic comparison of 
the results, together with the experimental data. 
 
Tab.6: Table comparison of the results. 

Parameter Unit Optimal value 

NLPQL (number of necessary iterations of the algorithm = 21) 

RO Mg/mm3 2.400x10-9 

FPC MPa 20.00000 

DAGG mm 8.00000 

RMSD mm 0.0074627 

Simplex (number of necessary iterations of the algorithm = 75) 

RO Mg/mm3 2.409x10-9 

FPC MPa 20.00000 

DAGG mm 8.00829 

RMSD mm 0.0074597 

ARSM (number of necessary iterations of the algorithm = 180) 

RO Mg/mm3 2.450x10-9 

FPC MPa 20.00000 

DAGG mm 8.00000 

RMSD mm 0.0074581 

EA (number of necessary generations of the algorithm = 400) 

RO Mg/mm3 2.450x10-9 

FPC MPa 20.00000 

DAGG mm 28.10027 

RMSD mm 0.0073995 

PSO (number of necessary generations of the algorithm = 400) 

RO Mg/mm3 2.438x10-9 

FPC MPa 20.00007 

DAGG mm 8.00000 

RMSD mm 0.0074575 
  

 The results shown in Tab. 6 and in Fig. 5 show that the 
accuracy of all of the five optimisation algorithms used 
was very satisfactory as a very good approximation of the 
experimental data was achieved by the numerical 
simulations, during which optimal values were gained for 

the identified parameters of the material model of concrete 
used in the individual optimisation algorithms. Moreover, 
it can be seen that the differences in accuracy between the 
individual algorithms are practically negligible (the curves 
practically overlap). However, when looking at the RMSD 
values for the individual algorithms in Tab. 6, it can be 
concluded that the most accurate optimisation algorithm 
for the given task is unambiguously the Evolutionary 
Algorithm (EA). 

 
Fig. 5: Graphic comparison of the results. 

 When looking at Tab. 6 it can additionally be stated that 
the most efficient algorithm for the given task was clearly 
the Non-Linear Programming by Quadratic Lagrangian 
(NLPQL) as this algorithm needed only 21 iterations to 
find the global minimum of the objective function. It can 
also be stated that, in contrast, the least efficient 
optimisation algorithms were the Evolutionary Algorithm 
and Particle Swarm Optimisation (PSO), as these 
algorithms needed up to a total of 400 generations to find 
the global minimum of the objective function. 

 It can be concluded from the above-mentioned facts 
that with regard to the accuracy and the finding of the 
global minimum of the objective function during global 
optimisation, the Evolutionary Algorithm is the most 
advantageous, even though this algorithm is not the most 
efficient with regard to calculation time consumption. 
Moreover, the optimal value of DAGG parameter for the 
Evolutionary Algorithm differed significantly from the 
DAGG values of other algorithms (see Tab. 6). This 
difference was due to the existence of two very close 
minimum peaks of the objective function, of which just 
one can be classified as the global minimum. Given the 
smallest RMSD value for the Evolutionary Algorithm, it 
can be concluded that the global minimum of the objective 
function was just found using this algorithm. In the case of 
other algorithms, a local minimum which is, however, very 
close to the global minimum was found. For this reason, 
the results of all algorithms can be considered as 
comparable. 

 Another conclusion is that from the point of view of 
efficiency, the use of the NLPQL algorithm and possibly 
also the Simplex Method can be very advantageous for 
global optimisation as these optimisation algorithms also 
exhibit very good accuracy, which is comparable with that 
of the Evolutionary Algorithm. 
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5. Conclusion 
This paper focused on the performing of a study of the 
efficiency and accuracy of five optimisation algorithms 
included in optiSLang software during the inverse 
identification of values for a small number of parameters 
of the modified version of the Continuous Surface Cap 
Model implemented in the LS-Dyna computational 
system. A four-point bending test task was used for this 
purpose. It was executed on a high, steel-reinforced 
concrete beam for which a computational model was 
created, and experimental data were obtained. 

 The results of the study showed that the accuracy of all 
five of the optimisation algorithms used was very 
satisfactory as a very good approximation of experimental 
data was achieved by the numerical simulations in which 
the optimal values of identified parameters obtained via 
the individual optimisation algorithms were used. 
Moreover, the differences in accuracy between the 
individual algorithms were practically negligible. 
However, during global optimisation the most accurate 
optimisation algorithm was the Evolutionary Algorithm, 
though it was not the most efficient as far as calculation 
time consumption is concerned. Also, the results of the 
study showed that the use of the NLPQL algorithm, and 
possibly the Simplex Method, can be very advantageous 
for global optimisation with regard to efficiency. The 
accuracy of these algorithms was also comparable to that 
of the Evolutionary Algorithm. 
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