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Abstract. Travelling mass due to its mass inertia has 
significant effect on the dynamic response of the 
bridges. This study is devoted to the study of the 
dynamic response the real steel railway bridge of the 
length Lb = 38 m for the single locomotive bogie mass 
load MLbg = 44 t (Škoda 350) passing over the bridge 
with the speed v=65 m/s. The iteration method of the 
governing partial differential equation of the 
transverse motion of the bridge structure w(x,t) has 
been applied. The modal superposition method for the 
vertical bridge deflection w(x,t) considering the first 
mode j=1 was used. 
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1. Introduction 

Investigating of railway bridges traversed by moving 
vehicles is one of the important concerns for the 
structural engineers in the design of highway and 
railway bridges. By introducing the inertial effects of 
the moving loads into the problem formulation, more 
realistic results would be gained especially for loads 
with relative large weights travelling at high speed. 

 When creating a computational model for a moving 
load–bridge, there is important the ratio of the bridge 
weight mb and the weight of moving vehicle Mv and the 
speed c of the moving load.  With regard to this aspect 
we say about the load models:  

 - moving load models, Fig. 1a, 

 - moving mass un-sprung and sprung models,  
   Fig. 1b, 

 - a complex dynamic interaction model for the    
    vehicle, Fig. 1c. 

 
Fig. 1: Schematic representation of load models for the dynamic 

response of bridges. 

 For the load by a real train composed of several 
cars, or a characteristic vehicle there are applied 
different geometrical intervals for the set of loads, as is 
shown in Fig. 2. 

 

 

Fig. 2: Characteristic load of railway bridges – loading by IC cars 
and towing locomotive. 

The basic role of the dynamic response of a bridge 
results from the analysis of a characteristic load 
concentrated at the bogie position of the locomotive. 
As a plain model is considered in the analysis the 
rolling of vehicles are neglected. 

 This study is devoted to the study of the dynamic 
response the real railway middle span bridge of the 
length Lb = 38 m for the single load MLbg = 44 kN 
moving the speed c = 65 m/s =234 km/h, Fig, 3. For 
the presented example the ratio of the moving mass and 
the beam mass mb is MLbg / mb = 0,36. 
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Fig. 3: Single mass M moving on the bridge. 

2.  Dynamic Equilibrium Equation 
and Solution 

The main difficulty to deal with moving mass problems 
is that the unknown displacement w(x,t) in the 
differential equation appears on the both sides of Eq. 
(1). 

    
( ) ( )2 4

1 ( )2 4

, ,
( ( , )) ( )M

d w x t d w x t
m EI M g w x t x ct

dt dx
δ+ = − ⋅ −

   (1)  

where:  
1m [t] is the mass per unit length of the bridge, 

EI [kNm2] is the bending stiffness of the bridge, 
( )x ctδ −  is the Dirac function (a generalized function 

expresses the concentrated load acting at point 
p x ct= − , 

( ) ( , )Mw x t is the vertical acceleration of the beam. 

 The force effect on the right hand side of Eq. (1) is 
acting in a moving coordinate p ct= , that is the 
instantaneous spatial location of the moving mass, can 
be expressed as 

   2 2 2
( ) 2

2 2 2

( , ) ( , ) ( , ) ( , ) ( , )2Md w p t w x t w x t w x t w x tc c
dt t t x x

 ∂ ∂ ⋅∂ ∂= + + ∂ ∂ ∂ ∂ 

  (2) 

The second and third term in Eq. (2) which are related 
to the Coriolis force and the centrifugal force are 
usually omitted on the dynamic response without 
affecting the accuracy of solution. Then the vertical 
component 

2

2
( , )w x t
t

∂
∂

 is considered and the problem is 

represented by the simplified equation 

   ( ) ( )2 4 2

1 2 4 2

, , ( , )( ) ( ).
d w x t d w x t w x tm EI G M x ct

dt dx t
δ ∂+ = − − ∂ 

      (3) 

 A convenient rigorous solution for the problem has 
not been found. Commercial finite element solvers 
applied to the moving mass are also questionable. 
Therefore an iterative approach was applied. Equation 
(3) for an iteration approach can be rewriting as 

   ( ) ( )2 ( ) 4 ( )
( )apx

1 2 4

, ,
( ) ( ).

k apx k apx
kd w x t d w x t

m EI F t x ct
dt dx

δ+ = ⋅ −   (4) 

The interaction force (the contact force) is 

       (k)apx ( 1)
( )( ) ( ( , )) ( )k apx
MF t M g w p t p ctδ−≡ − ⋅ −          (5) 

The interaction force (the contact force) in Eq. (5) is 

the superposition of the gravity force G=mg and the 
inertia force ( 1)apx ( , )k

MM w p t−⋅  due to acceleration of the 
mass M. 

 The modal superposition method for the vertical 
bridge deflection w(x,t) considering the first mode j=1 
was applied:  

                     ( ) ( ) ( ) ( )(1) (1)1,w x t q t xφ=                        (6) 

Then, the interaction force Eq. (5) can be expressed by 
mean the modal coordinate ( ) ( )1q t as 

( ) ( ) ( 1) ( 1)apx
(1),( ) (1) (1) (1( ) ( , ) ( ) sink apx k apx k apx k

G M drF t G M w p t G M q t t− −
+ = − ⋅ = − ⋅ ⋅ Ω 

                    (7) 

The modal equation corresponding Eq. (1) and Eq. (7) 
after manipulations [3] can be written as [2,3,5] 

     ( ) ( ) ( )
( )

(1),( ) (1)( ) 2 ( )
(1) (1)1

2
1 (1)

0

( ) ( )

( )
b

k apx
G Mk apx k apx

L

F t x
q t q t

m x dx

φ
ω

φ

+ ⋅
+ =


         (8) 

The modal equation (8) in practical solution is applied 
for the fundamental mode of vibration j=1 and for the 
mass force (7) it may be written as 

( ) ( ) ( )
( )

(1),( ) (1(( ) 2 ( )
(1) (1)1

1

2 ( ) sink apx
G M drk apx k apx

b

F t t
q t q t

m L
ω + ⋅ Ω

+ =   (9) 

or by means the modal coordinate Eq. (7) has the form  

2 2
(1) (1) (1) (1)dr (1) (1)dr

1 1

2 2( ) ( ) sin ( ) (sin )
b b

G Mq t q t t q t t
m L m L

ω ⋅ ⋅+ = Ω − ⋅ Ω   
                          (10) 

Eq. (10) is the nonlinear equation and the rigorous 
solution has not been found. Equation (10) is valid 
because it is assumed that the contact of mass M and 
the beam is always maintained, i.e. the acceleration of 
the beam (1) ( , )w p t and the acceleration of the mass 

(M) ( , )w p t are the same: 

                ( 1) ( 1)
( ) (1)( , ) ( , )k apx k apx
Mw p t w p ct t− −= =             (11) 

Then, the interaction force can be considered as the 
superposition of effects of the gravitation force and the 
inertia force: 

  ( )apr ( )apr ( )apr ( )apr
( ) ( ) ( )( ) ( ) ( ) ( )k k k k
G M MF t F t F t G F t= + = + .  

            (12) 

 The modal Eq. (10), for the known interaction force
( )apr ( )kF t , can be solved in the time domain by the 

convolution integral and the modal coordinate 
( )
(1) ( )k apxq t considering the 1st mode of vibration is 

    ( )
( )

( )
(1) (1) (1)

(1) 10

2 ( )1 sin ( ) sin ( )
t k apx

k apx
dr

b

F tq t t d
m L

τ ω τ τ
ω

 
= Ω − 

 
    

              (13) 
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3.  Iteration Solution of Interaction 
 Forces and Displacements  

• Inputs parameters for the numerical example: 
Gbg = 440 kN, c = 65 m/s = 234 km/h, Lb = 38 m. 

• Bridge structure 
 - the bending stiffness EI = 7.58∙107 kNm2,  

- the beam mass 1 1(BS) 1(Sup)m m m= +  =  3180 kg/m,  

 - the first circular frequency 1
(1) 33.34sω −= , 

 - the driving frequency
(1) 5.3711dr

b

c
L
πΩ = = [s-1], 

 - the dimensionless speed factor

 (1)
(1)

(1)

0.1611drα
ω

Ω
= = .  

The numeric solution is processed with [6]. 
 

3.1     First Interaction (k=1) 

This load state corresponds to the simple moving force 

bgLG over the bridge, Fig. 4.  

 
Fig. 4: Load model for the first iteration. 
 

1)  Interaction force due to the gravity force              
The first interaction force acting on the beam at any 
distance p ct= , Fig. 4, is expressed from (3) without 
the inertial effect of the mass ( )bgLM as              

       
bg

1apx
( ) ( , )= 440

bgG LF p t G kN= .         (14) 

 
2) Modal displacement due to gravity force  

The general modal equation for 1apx
(1),(G ) ( )

Lbg
q t due to the 

single gravitation force
bgLG , resulting from the 

differential equation Eq. (10), is the known modal 
equation due to moving force [2, 5]: 

         
( )

1apx 2 1apx
(1),(G ) (1),(G ) (1)1

1

2
( ) ( ) sinbg

L Lbg bg

L
dr

b

G
q t q t t

m L
ω+ = Ω      (15) 

The analytical solution Eq. (15) [1, 4] is: 

   ( ) ( )(1),(G )1
(1),(G ) (1) (1) (1)2

(1)

ˆ ( / 2)
sin sin

1
Lbg

Lbg

st bapx
dr

q L
q t t tα ω

α
= Ω −

−
      (16) 

The modal displacement from Eq. (16) can be 
expressed by superposition of components:  

  ( ) ( ) ( )1 1 1
(1)( ) (1)( )st (1)( )dynLbg Lbg Lbg

apx apx apx
G G Gq t q t q t= +          (17) 

The mid-point beam displacement ( )1
(1)( ) / 2,

Lbg

apx
G bw L t is 

identical with the modal displacement 1apx
(1),(G ) ( )

Lbg
q t : 

          ( ) ( ) ( )1 1 1
(1)( ) (1)( ) (1)( )/ 2, sin

2Lbg Lbg Lbg

apx apx apxb
G b G G

b

Lw L t q t q t
L

π= ⋅ ≡   

(18) 

Numerical results of the dynamic deflection at the 
midpoint of the bridge are presented in Fig. 5 ÷ Fig. 7. 

 

3) Mid-point modal displacement 1
(1),( ) ( )

Lbg

apx
Gq t  

• Components of the modal displacement, 
Fig. 5. 

 
Fig. 5: Axes: x= t [s], y= Components 1 1

(1),( )st (1),( )dyn( ), ( )
Lbg Lbg

apx apx
G Gq t q t  
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(1),( )stˆ ( ) 0,0068m

Lbg

apx
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1
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G
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G st

q t
q t

= =  …..16 % 

 
• Total modal component 1

(1),( ) ( )
Lbg

apx
Gq t , Fig. 6. 

 
Fig. 6: Axes: x= t [s], y= 1

(1),( ) ( )
Lbg

apx
Gq t [m], Amplitude: 

1
(1),( )ˆ ( ) 0.0076 m

Lbg

apx
Gq t =  

 
• Dynamic coefficient 1apr

dynδ , Fig. 7. 
 In practice the dynamic coefficient is defined as the 
ratio of the maximum dynamic deflection to the static 
deflection at mid-span of a bridge. For (k=1) it is: 

                       
1
(1),( ) max1

1
(1),( )

( )
ˆ ( )

Lbg

Lbg

apx
Gapr

dyn apx
G st

q t
q t

δ =                 (19) 
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Fig. 7: Axes: x=t [s], y= Dynamic coefficient 

1
(1),( ) max1

1
(1),( )

( ) 0.0076 1.13
ˆ ( ) 0.0067

Lbg

Lbg

apx
Gapr

dyn apx
G st

q t
q t

δ = = =
  

4) Beam displacement 1
(1)(G ) ( , )

Lbg

apxw p t  under the 

moving coordinate p ct=  and the modal 
displacement 1

(1)(G ) ( / 2, )
Lbg

apx
bw L t  

The beam displacement 1
(1)( ) ( , )

Lbg

apx
Gw p t under the moving 

force
bg

1apx
( ) ( , )GF p t is also defined by the modal coordinate

1
(1),( ) ( )

Lbg

apx
Gq t and the result is in Fig. 8. 

          1 1
(1)( ) (1)( ) (1)( , ) ( ) sin

Lbg Lbg

apx apx
G G drw p t q t t= ⋅ Ω          (20) 

The modal displacement 1 1
(1),( ) (1)(G )( ) ( / 2, )

Lbg Lbg

apx apx
G bq t w L t≡ is 

known from Eq. (16), Fig. 6. 

 
Fig. 8: Axes: x= t [s], y= 1

(1)(G ) ( , )
Lbg

apxw p t [m] – the brick red color, 

1 1
(1),( ) (1)(G )( ) ( / 2, )

Lbg Lbg

apx apx
G bq t w L t≡ - the blue color,   

3.2     Second Interaction (k=2) 

This load state corresponds to the moving force 
2

( ) ( , )
Lbg Lbg

apx
G MF p t+

due to load ( )
bg bgL LG M+ , (Fig. 3), can 

be solved by the superposition with the static contact 
force 2

( ) ( , )
Lbg bg

apx
G LF p t G= and the time-dependent 

dynamic force 2
(M ) ( , )

Lbg

apxF p t is   

  2 2
( M ) (M )( , ) ( , )

Lbg Lbg bg Lbg

apx apx
G LF p t G F p t+ = + .       (21) 

5) Interaction force component due to the 
gravity force 

bgLG     

The gravitation force 2
( ) ( , )

Lbg

apx
GF p t  for the bogie position 

p ct=  is given from input parameters as 

            2
( ) ( )( , ) 440

Lbg bg

apx
G LF p t G kN= =                (22) 

 
6) Interaction force component due to the mass 

load 
( ) 44

bgLM t=  

The interaction force due to mass 44
bgLM t=  can be 

formulated direct from Eq. (10): 

( )
2 1

( ) ( ) (1),( ) (1)

2 2
( ) (1) (1) (1)dr (1) (1) (1)

( , ) ( ) sin

ˆ (sin ) sin sin
Lbg bg Lbg Lbg

Lbg

apx apx
M L G M dr

M dr dr dr

F p t M q t t

F t t tω ω
+=− ⋅ ⋅ Ω =

= −Ω ⋅ Ω +Ω ⋅ ⋅ Ω


 

               (23) 

The force component 2
( ) ( , )

Lbg

apx
MF p t contains two parts 

corresponding to the modal acceleration 
1 1
(1),( ) (1),( )( ) ( )

Lbg Lbg

apx apx
M Gq t q t≡  from the first iteration of the 

mass 
( ) 44

bgLM t=  and it can be express by the 

superposition: 

      2 1 2 2 2
( ) (M )st ( )dyn( , ) ( , ) ( , )

Lbg Lbg Lbg

apx apx apx
M MF p t F p t F p t= +     

              (24) 

Numerical results of the dynamic force and its 
components at the midpoint of the bridge are processed 
with [6] and presented are in Fig. 9 ÷ Fig. 11. 

• Quasi-static force component 1 2
( ) st ( , )

Lbg

apx
MF p t

due acceleration 1 1
(1),( )st ( )

Lbg

apx
Gq t   

This component results direct from Eq. (23), Fig. 9: 

(1)( )st1 2 2 2
( )st ( ) (1) (1)2

(1)

ˆ ( / 2)
( , ) (sin )

1
Lbg

Lbg bg

G bapx
M L dr dr

q L
F p t M t

α
= Ω ⋅ Ω

−
 

                        (25) 

 
Fig. 9: Axes: x= t [s], y= 1 2
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( )

2 2 2 1
( )dyn ( ) (1),( ) (1)

(1)( )st
( ) (1)dr (1) (1) (1)2

(1)

( ) ( ) sin

ˆ ( / 2)
sin sin

1

Lbg bg Lbg

Lbg

bg

apx apx
M L G dyn dr

G b
L dr

F p ct M q t t

q L
M t tω ω

α

 = = − ⋅ Ω = 

= − Ω ⋅ ⋅ Ω
−

    (26) 

 
Fig. 10: Axes: x= t [s], y= 2 2

( ) ( )
Lbg

apx
M dynF p ct=  [kN], 

2 2
( )

ˆ ( ) 52
Lbg

apx
M dynF p ct kN= = .  

• Total inertial force effect 2
( ) ( , )

Lbg

apx
MF p t  due   

to the mass 44
bgLM t=  

Superposition from Eq. 24 one obtains the total inertial 
effect 2

( ) ( , )
Lbg

apx
MF p t and its components: 

• Components 1 2apx
( )st ( , )

LbgMF p t and 

2 2apx
( )dyn ( , )

LbgMF p t  of the inertial force
2apx

( ) ( , )
LbgMF p t , Fig. 11. 

Fig. 11: Axes: x= t [s], y= 1 2 2 2
( )st ( )( , ), ( , )

Lbg Lbg

apx apx
M M dynF p t F p t

[kN],Amplitudes: 1 2
( )st

ˆ ( , ) 8.6
Lbg

apx
MF p t kN= , 

2 2
( )

ˆ ( , ) 52
Lbg

apx
M dynF p t kN= . 

From Fig. 11 can see the dominant effect generates the 
dynamic component 2 2

( )
ˆ ( , )

Lbg

apx
M dynF p t . 

• Total inertial force 2apx
( ) ( , )

LbgMF p t , Fig. 12. 

 

Fig. 12: Axes: x= t [s], y= Total force 2apx
( ) ( )

LbgMF t [kN], Amplitudes 

2
( )

ˆ ( , )
Lbg

apx
MF p t  = 60,5 kN.  

7) Total modal displacement due to    load 
( )

bg bgL LG M+  

The influence of the interaction force of the locomotive 
bogie load 2

( M ) ( , )
Lbg Lbg

apx
GF p t+ on the dynamic bridge 

deflection is evaluated though the modal displacement
2
(1)( M ) ( )

Lbg Lbg

apx
Gq t+ : 

2 2
(1)( M ) (1)( M ) (1)( , ) ( ) sin

Lbg Lbg Lbg Lbg

apx apx
G G dtw p ct p q t t+ += = ⋅ Ω . 

                             (27) 

The total modal displacement 2
(1)( M ) ( )

Lbg Lbg

apx
Gq t+ can be 

expressed by the convolution integral: 
2

2apx
(1) (1) (1)

(1) 10

2 ( , )1( ) sin sin ( )
t apx

dr
b

F p tq t t d
m L

τ ω τ τ
ω

 
= Ω ⋅ − 

 
  

                                                   (28) 
This displacement is again advantageously to evaluate 
through modal components 2

(1),( ) ( )
Lbg

apx
Gq t  and 

2
(1),(M ) ( )

Lbg

apxq t belong effects 
bgLG and 

bgLM  by the 

superposition as 

 
2 2 2
(1),( M ) (1),( ) (1),(M )( ) ( ) ( )

Lbg Lbg Lbg Lbg

apx apx apx
G Gq t q t q t+ = +

  (29) 

Results of solution of modal displacements due to the 
load ( )

bg bgL LG M+ are shown in Figs. 13÷17. 

• Modal displacement 2
(1),( ) ( )

Lbg

apx
Gq t  due to the 

gravity force  

The modal displacement 2
(1),( ) ( )

Lbg

apx
Gq t  is expressed from 

Eq. (25) as 
2

( )2
(1),( ) (1) (1)

(1) 10

( ) (1) (1)
(1) 1 0

2 ( )1( ) sin sin ( )

1 2 sin sin ( )

bg

Lbg

bg

apxt
Gapx

G dr
b

t

L dr
b

F p
q t t d

m L

G t d
m L

τ ω τ τ
ω

τ ω τ τ
ω

 ⋅
= Ω ⋅ − = 

  

= Ω ⋅ −





 

                       (30) 
For 2

(1),( ) ( )
(1) 1

1 2ˆ 0.2148
Lbg bg

apx
G L

b

q G
m Lω

= =  the modal 

displacement 
( )

2
(1),( ) ( )

Lbg

apx
Gq t is presented in Fig. 13. 

 
Fig. 13: Axes: x= t [s], y= 2
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• Modal displacement 2
(1),( ) ( )

Lbg

apx
Mq t  due to the 

inertial mass effect ( ) 44
bgLM t=  

This displacement can be also expressed by the 
convolution integral (the analogous practice as in the 
Section (3.2.3)), but now for the interaction inertial 
force 2

( ) ( )
Lbg

apx
MF t  due to the acceleration 2

( ) ( , )
Lbg

apx
Gw p t : 

      2
( )2

(1),( ) (1) (1)
(1) 10

2 ( )1( ) sin sin ( )Lbg

Lbg

apxt
Mapx

M dr
b

F t
q t t d

m L
τ ω τ τ

ω
 ⋅

Ω ⋅ − 
  


     (31)  

The loading force component 2
( ) ( )

Lbg

apx
MF t  in Eq. (31) is 

the inertial force, which is the function of acceleration 
1
(1),( ) ( )

Lbg

apx
Gq t  from the first iteration: 

                  2 1
( ) ( ) (1),( )( ) ( )

Lbg bg Lbg

apx apx
M L GF t M q t= −                  (32) 

The acceleration force component in Eq. (32) can be 
divided into parts:  

       
1 1 1 2 1
(1)(G ) (1)(G )st (1)(G )dyn( ) ( ) ( )

Lbg Lbg Lbg

apx apx apxq t q t q t= +  
     (33) 

Such superposition gives a quasi- static modal 
displacement 1 2

(1),( )st ( )
Lbg

apx
Mq t  and a dynamic modal 

displacement 2 2
(1),( ) ( )

Lbg

apx
M dynq t : 

          1 1 1 2 1
(1)(G ) (1)(G )st (1)(G )dyn( ) ( ) ( )

Lbg Lbg Lbg

apx apx apxq t q t q t= +         (34) 

8)  Quasi-static component 1 2
(1),( )st ( )

Lbg

apx
Mq t of the 

modal displacement 
The component 1 2

(1),( )st ( )
Lbg

apx
Mq t of the modal displacement 

is expressed by the convolution integral and is 
presented in Fig. 14. 
For 

(1)( )st1 2 2
(1),( )st ( ) (1)2

(1) 1 (1)

ˆ ( / 2)1 2ˆ 0,0043
1
Lbg

Lbg bg

G bapx
M L dr

b

q L
q M

m Lω α
∗ = Ω =

−
 

1 2 1 2 2
(1),( )st (1),( )st (1) (1)

0

ˆ( ) sin ) sin ( )
Lbg Lbg

t
apx apx

M M drq t q t dτ ω τ τ= Ω ⋅ −
             (35) 

 
Fig. 14:  Axes: x= t [s], y= 1 2

(1),( )st ( )
Lbg

apx
Mq t [m], Amplitude: 

1 2
(1),( )stˆ ( ) 0.00014

Lbg

apx
Mq t m= . 

9) Dynamic component of the modal 
displacement 2 2

(1),( ) ( )
Lbg

apx
M dynq t   

For the amplitude of the modal displacement

(1)( )st2 2
(1),( ) ( ) (1) (1)2

(1) 1 (1)

ˆ ( / 2)1 2ˆ 0.0266
1
Lbg

Lbg bg

G bapx
M dyn L dr

b

q L
q M

m L
ω

ω α
∗ = Ω =

−

                (36) 
The modal displacement component 1 2

(1),( )st ( )
Lbg

apx
Mq t is 

again expressed by the convolution integral and the 
result is shown in Fig. 15. 

( )2 2 2 2
(1),( )dyn (1),( )dyn (1) (1) (1)

0

ˆ( ) sin sin sin ( )
Lbg Lbg

t
apx apx

M M drq t q t dω τ τ ω τ τ= − ⋅ Ω ⋅ −  
            (37)  

 
Fig. 15: Axes: x= t [s], y= 2 2

(1),( ) ( )
Lbg

apx
M dynq t [m], Amplitude 

2 2
(1),( )ˆ ( ) 0,0039

Lbg

apx
M dynq t m= . 

10)    Total modal displacement 2
(1),( ) ( )

Lbg

apx
Mq t  

Superposition from Eq. (34) one get the total modal 
displacement 2

(1),( ) ( )
Lbg

apx
Mq t with its components. 

• Components 2 2
(1),( )st (1),( )dyn( ), ( )

Lbg Lbg

apx apx
M Mq t q t , Fig. 16. 

 
Fig. 16: Axes: x= t [s], y= Components 1 2 2 2

(1),( )st (1),( )dyn( ), ( )
Lbg Lbg

apx apx
M Mq t q t  

of the modal displacement 2
(1),( ) ( )

Lbg

apx
Mq t [m].  

• Total inertial mass effect 2
(1)( ) ( )

Lbg

apx
Mq t , Fig. 17. 

 
Fig. 17: Axes: x= t [s], y= Total displacement 2

(1),( ) ( )
Lbg

apx
Mq t [m], 

Amplitude 2 2
(1),( )ˆ ( ) 0.0039

Lbg

apx
M dynq t m= . 
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From Fig. 16 can be seen that for the dominant effect 
of the dynamic component 2 2

( ) ( , )
Lbg

apx
M dynw p t  can be stated: 

                     2 2 2
( ) ( )( , ) ( , )

Lbg Lbg

apx apx
M M dynw p t w p t≈                  (38) 

11)   Beam displacement at midpoint due to load 
( )

bg bgL LG M+  and for the speed c = 65 m/s 

The beam displacement 2
(1)( ) ( / 2, )

Lbg Lbg

apx
G M bw L t+

 at the 

midpoint due to the force
bg

2apx
( + ) ( , )

LbgG MF p t is also defined 

by the modal coordinate 1
(1),( ) ( )

Lbg

apx
Gq t . 

     2 2
(1)( ) (1)( ) (1)( / 2, ) ( ) sin

Lbg Lbg Lbg

apx apx
G M b G drw L t q t t+ = ⋅ Ω   (39) 

The beam displacement at mid-point of the beam 

( )

2
(1),( ) ( / 2, )

Lbg Lbg

apx
G M bw L t+

 obtains also by the superposition.  

   
2 2 2
(1)( ) (1),( ) (1),( )( / 2, ) ( ) ( )

Lbg Lbg Lbg Lbg

apx apx apx
G M b G Mw L t w t w t+ = +   

                (40) 

Results for the beam displacement are presented in Fig. 
18÷20. 

• All components of the beam displacement 
2 2
(1),( ) (1),( )( ), w ( )

Lbg Lbg

apx apx
G st G dynw t t and 2 2

(1),( ) (1),( )( ), w ( )
Lbg Lbg

apx apx
M st M dynw t t . 

 
 
Fig. 18:  Axes: x= t [s], y= All components [m],  

2
(1),( ) ( / 2, )

Lbg

apx
G st bw L t - the blue colour, 2

(1),( )dyn ( / 2, )
Lbg

apx
G bw L t - the 

brick red colour, 
 2

(1),( ) ( / 2, )
Lbg

apx
M st bw L t - the yellow colour, 2

(1),( ) ( / 2, )
Lbg

apx
M dyn bw L t - 

the green colour. 
 

 

Fig. 19:  Axes: x= t [s], y= Cumulative components [m],  
2
(1),( ) ( / 2, )

Lbg

apx
G st bw L t - the blue colour, 2

(1),( )dyn ( / 2, )
Lbg

apx
G bw L t - 

the brick red colour. 
 

• Cumulative components 2
(1),( ) ( / 2, )

Lbg

apx
G bw L t  and 

2
(1),( ) ( / 2, )

Lbg

apx
G bw L t for the mid-point of the beam 

The result of the cumulative components from Eq. (40) 
is presented in Fig. 19. 
 

• Total beam deflection at mid-span
( )

2
(1),( ) ( / 2, )

Lbg Lbg

apx
G M bw L t+

due to load ( )
bg bgL LG M+ , 

Fig. 20. 

 
 

Fig. 20:  Axes: x= t [s], y= Total beam displacement 
2
(1)( ) ( / 2, )

Lbg Lbg

apx
G M bw L t+

[m], 2
(1)( )ˆ ( / 2, ) 0.0098

Lbg Lbg

apx
G M bw L t m+ = . 

 

• Dynamic coefficient 2 ( / 2, )apx
dyn bL tδ for the 

beam displacement, for the load ( )
bg bgL LG M+   

The dynamic coefficient is defined as the ratio of the 
maximum dynamic deflection to the static deflection at 
mid-span of the beam. For the second iteration of the 
beam displacement it is 

             
,

2
(1),( )max2

2
(1),( )

( / 2, )
( / 2, )

( / 2, )
Lbg Lbg

Lbg st

apx
G M bapx

dyn b apx
G b

w L t
L t

w L t
δ +=         (41) 

From the above dynamic analysis results the dynamic 
coefficient is show on Fig. 21.  

 

Fig. 21:  Axes: x= t [s], y= Dynamic coefficient  2 ( / 2, )apx
dyn bL tδ

2
(1),( )max2

2
(1),( )

( / 2, ) 0.0095( / 2, ) 1.41
( / 2, ) 0.0067

Lbg Lbg

Lbg

apx
G M bapx

dyn b apx
G st b

w L t
L t

w L t
δ += = =   
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3.3   Comparison Results of Dynamic 
Response 

• Total interaction force 2
( M ) ( )

Lbg Lbg

apx
GF p ct+ =  

due  to the mass moving load ( )
bg bgL LG M+ , Fig. 22.  

The total interaction force consist from the static 
contact force 

( )bgLG and the time-dependent dynamic 

component 2
( ) ( , )

Lbg

apx
MF p t  

          2 2
( M ) ( ) ( )( , ) ( , )

Lbg Lbg bg Lbg

apx apx
G L MF p t G F p t+ = +     (42) 

 

 
Fig. 22:  Axes: x= t [s], y= Total interaction force  

2
( M ) ( )

Lbg Lbg

apx
GF p ct+ = [kN], 2

( M )
ˆ ( , )

Lbg Lbg

apx
GF p t+

= 496 kN. 

• Beam deflections at mid-span 2
(1),( ) ( )

Lbg

apx
Gq t  for (k=2) 

and 2
(1),( ) ( / 2, )

Lbg Lbg

apx
G M bw L t+

 for (k=2), Fig. 23. 

 
 
Fig. 23:  Axes: x= t [s], y= Total beam displacements [m],     

2
(1),( ) ( / 2, )

Lbg

apx
G bw L t  - - - - - -  2

(1),( ) ( / 2, )
Lbg Lbg

apx
G M bw L t+

 _________      

Amplitudes: 2
(1)( )ˆ ( / 2, )

Lbg Lbg

apx
G M bw L t+

= 0.0096 m , 
2
(1),( )ˆ ( / 2, ) 0.0077

Lbg

apx
G bw L t m=  

The ratio of amplitudes:  
2
(1)( )

2
(1)( )

( / 2, ) 0.0096( ) 1.24
( / 2, ) 0.0077

Lbg Lbg

Lbg

apx
G M b

apx
G b

w L t
w L t

+Δ = =
  ......  24 % 

 Dynamic coefficients: 
 1 0.0077 1.13

0.0068
apr

dynδ = =
  and  2

,( M )
0.0096 1.41
0.0068Lbg Lbg

apx
dyn Gδ + = =  

 

3.4     Third Interaction (k=3) 

This load state corresponds to the moving force 
3

( ) ( , )
Lbg Lbg

apx
G MF p t+

and the beam deflections 
3
( ) ( , )

Lbg Lbg

apx
G Mw p t+

again can be solved superposition by 

analogy as in section 2. The main result for the mid-
span of the beam is in Fig. 24. 

• Beam deflections at mid-span for (k=3) 

,

3
(1),( ) ( / 2, )

Lbg st

apx
G bw L t   and 3

(1),( ) ( / 2, )
Lbg Lbg

apx
G M bw L t+

, Fig. 24 

 
 
Fig. 24:  Axes: x= t [s], y= Total beam displacements [m] ,      

3
(1),( ) ( / 2, )

Lbg

apx
G bw L t  - - - - - -  3

(1),( ) ( / 2, )
Lbg Lbg

apx
G M bw L t+

 _______ ,      

Amplitudes: (3)
(1),( ) ( / 2, ) 0.0089m

Lbg Lbg

apx
G M bw L t+ =  

3
(1)( )ˆ ( / 2, ) 0.0077

Lbg

apx
G bw L t m=  

2 0.0077 1.13
0.0068

apr
dynδ = =

  and  ( )
( )

0.0089( / , ) 1.31
0.0068Lbg Lbg

3 apx
G M dyn bL 2 tδ + = =  

 
• Comparison Beam Deflections 

2
(1),( ) ( / 2, )

Lbg Lbg

apx
G M bw L t+

for (k=2) and
3
(1),( ) ( / 2, )

Lbg Lbg

apx
G M bw L t+

 for (k=3), Fig. 25. 

 
 
Fig. 25: Axes: x= t [s], y= Total beam displacements [m] ,      

2
(1),( ) ( / 2, )

Lbg Lbg

apx
G M bw L t+

for (k=2) – the blue colour      

3
(1),( ) ( / 2, )

Lbg Lbg

apx
G M bw L t+

 for (k=3) – the red colour      

Amplitudes: 2
(1)( )ˆ ( / 2, )

Lbg Lbg

apx
G M bw L t+

= 0.0096 m , :

3
(1)( )ˆ ( / 2, )

Lbg Lbg

apx
G M bw L t+

= 0.0089 m . 
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4 Conclusion 

The objective of this study was detailed analysis of the 
dynamic response of the real steel railway bridge, 
modelled as the simple supported beam and excited by 
the traversed mass load MLbg  = 44 t concentrated at the 
locomotive bogies (Fig. 2,3), moving with the speed c 
= 65 m/s = 234 km/h. The influence of the individual 
components of the dynamic response, in particular, the 
effect of the quasi-static and dynamic components of 
the inertia force of the un-sprung mass on the dynamic 
response was study.  

 The following conclusions can be extracted: 
(1) The iterative modal approach as an approximate 
solution is suitable tool for the practical analysis of a 
moving mass problem. One of the main features of the 
presented method is the capability of handling the 
nonlinear problems into the linear solution.  
(2) The numerical solution demonstrated the efficiency 
of the iteration procedure allows to evaluate the 
influence of the moving mass on the dynamic response 
of the bridge. The numerical solution confirms that the 
third iteration gives adequate results. 
(3) The time histories of the bridge displacement at the 
mid-span and dynamic coefficients determined from 
them showed that the mass vibration significantly 
affects the dynamic response, especially for the higher 
speeds. While the dynamic coefficient for the moving 
load is 1

( ) ( / 2, ) 1.13
Lbg

apx
dyn G bL tδ = , (Fig. 7), the dynamic 

coefficient due to the moving mass for (k = 2) is 
2

( ) ( / 2, ) 1.41
Lbg Lbg

apx
dyn G M bL tδ + = , (Fig. 21), and 
3

( ) ( / 2, ) 1.31
Lbg Lbg

apx
dyn G M bL tδ + =  for (k = 3) 

 (4)  The influence of inertial effect of the mass at a 
higher speed influences the dynamic response 
especially when passing through the second half of the 
beam, when the inertial effects of the mass are 
significantly. 
 (5) The total response due to a moving vehicle obtains 
by utilization “the presented single concentrated bogies 
load” and the superposition principle with the 
application of the Heaviside function. 
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