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Abstract. Uncertainty quantification is an important part 
of a probabilistic design of structures. Nonetheless, 
common Monte Carlo methods are highly computationally 
demanding or even not feasible for this task, especially in 
case of mathematical models of physical problems solved 
by finite element method. Therefore, the paper is focused 
on the efficient alternative approach for uncertainty 
quantification-stochastic spectral expansion, represented 
herein by Polynomial Chaos Expansion. In recent years, 
an application of stochastic spectral methods in 
uncertainty quantification is the topic of research for many 
scientists in various fields of science and its efficiency was 
shown by various studies. The paper presents basic 
theoretical background of polynomial chaos expansion 
and its connection to uncertainty quantification. The 
possibility of efficient statistical and sensitivity analysis is 
investigated and an application in analytical examples 
with known reference solution is presented herein. 
Moreover, practical implementation of methodology is 
discussed and developed SW tool is presented herein. 
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1. Introduction 
The mathematical model of physical problem can be 
represented by function M of input variables X. Generally, 
the mathematical model M(X) can be solved in implicit 
form by various methods e.g. finite element method, which 
may be highly computationally demanding. Moreover, it is 
necessary to assume input variables X as a random vector 
to represent natural uncertainty of real physical problems. 
Therefore, response of model Y=M(X) is a random 
variable described by a probability distribution. This fact 
leads us to seek probability distribution of Y instead of 
deterministic result. There are several methods for this 
purpose (commonly called uncertainty quantification) and 
most of them can be generally divided to two groups of 
different nature: Monte Carlo simulation techniques and 

stochastic spectral methods. 
 Common method for reliability analysis and 
uncertainty quantification are Monte Carlo (MC) 
simulation techniques in various forms e.g. crude MC or 
Latin Hypercube Sampling (LHS). These popular methods 
are simple to understand and implement but their 
efficiency is not generally high. The core of MC methods 
is a pseudo-random sampling of the input random vector. 
To each of realizations corresponds specific solution of 
mathematical model. It is possible to utilize this process 
for estimation of the statistics of Y (typically statistical 
moments and probability distribution). Unfortunately, it is 
necessary to perform large amount of simulations 
uniformly covering the whole design domain for accurate 
estimation of statistics, which is usually not feasible in 
practical applications. 
 On the other hand, it is possible to utilize stochastic 
spectral expansion methods. Stochastic spectral expansion 
is a more recent alternative for an uncertainty propagation 
and it consists in representing the solution by a functional 
representation of the random variables expansion. The 
stochastic expansion methods mostly differ from each 
other only on the choice of the basis functions and by the 
calculation of the coefficients of the expansion. Typical 
stochastic expansion methods are Karhunen-Loéve 
expansion and Polynomial Chaos Expansion (PCE). These 
methods are typically more efficient in comparison with 
MC techniques but on the other hand, theory of PCE and 
its implementation is not straightforward. Moreover, 
general efficient approach for more complicated cases 
(correlated input variables with arbitrary probability 
distribution or highly non-linear complicated 
mathematical models) is still under development. 
 The paper is focused on detailed description of PCE as 
a highly efficient method for uncertainty quantification. 
First of all, basic theoretical background is briefly 
presented in section 2 and practical aspects of computation 
are discussed in section 3. Once the PCE is created, it is 
possible to utilize its specific form for analytical statistical 
and sensitivity analysis, as can be seen in section 4. The 
whole process is shown on simple analytical examples 
with known reference solution in section 5.  
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2. Theoretical Background 

Assume a probability space (Ω, ℱ, 𝒫), where Ω is an event 
space, ℱ is a σ-algebra on Ω and 𝒫 is a probability measure on ℱ. If the input vector of mathematical model 
is random vector X(ω), ω ∈ Ω, then model response Y(ω) 
is a random variable. A PCE is a method, originally 
proposed by Norbert Wiener [1], for representing variable 
Y as a function of an another random variable Ξ called 
germ with given distribution as follows: 

  ( )Y f= Ξ ,  (1) 

where the function is a polynomial expansion. A set of 
polynomials orthogonal with respect to the distribution of 
the germ are used as a polynomial basis. The orthogonality 
condition for all j k≠ is given by inner product of any two 
polynomials jψ and kψ with respect to the probability 
measure pξ of the germ Ξ as follows:  

  ( ) ( ) ( ), 0j k j k p dξψ ψ ψ ξ ψ ξ ξ ξ= = . (2) 

 In other words, we utilize specific orthogonal 
polynomials associated to the specific distribution of a 
germ. For example, if the germ has standard normal 
distribution, we get the Hermite polynomials orthogonal to 
the Gaussian measure:  

  ( ) ( ) 2 /2 !j k jkH H e d jξξ ξ ξ δ− = ,  (3) 

where δ is Kronecker delta equal to 1 if j k= , symbol ! 
represents factorial and Hj respectively Hk are Hermite 
polynomials of degrees j resp. k. Orthogonal polynomials 
associated to another distributions can be chosen 
according to Wiener-Askey scheme [2]. For further 
processing, it is beneficiary to use normalized polynomials 
(orthonormal), where inner product is 

  ,j k jkψ ψ δ= ,  (4) 

 In case of X and Ξ being vectors containing M random 
variables, the polynomial jψ is multivariate and it is built 
up as a tensor product of univariate orthogonal 
polynomials 

  ( ) ( )
1

i

M

i
i

αξ ψ ξ
=

Ψ = ∏α ,  (5) 

where M∈α  is set of integers called multi-index. In 
virtue of Eq. (2) and (4), the orthonormal polynomials are 
defined as:  

  ( ) ( ) ( ), p dξψ ψ ψ ξ ψ ξ ξ ξ δ= =α β α β αβ .  (6) 

 The random variable of interest (response of 
mathematical model f) can be then represented according 
to Soize and Ghanem [3] as:  

  ( )( )
M

Y f β
∈

= = Ψ α α
α

X ξ


,  (7) 

where β are deterministic coefficients and ψ are orthogonal 
polynomials. Without loss of generality, normalized 
Hermite polynomials are used for construction of Wiener-
Hermite PCE assuming that all input variables are 
transformed to uncorrelated standard normal space. 

3. Practical Computation 

The infinite PCE according to Eq. (7) must be truncated to 
final number of terms P for practical computation. 
Common way is to use terms whose total degree |α| is equal 
or less than the given p. Therefore, the truncated set of PCE 
terms is in mathematical notation:  

  ,

1
:

M
M p M

i
i

A pα α α
=

 = ∈ = ≤ 
 

 . (8) 

 The cardinality of the truncated set is given by:  

  
( )

,

!
! !M pA

M pM p
card P

p M p
++ 

≡ = = 
 

. (9) 

 The deterministic coefficients β can be computed by 
various methods, generally divided into two groups: 
intrusive (constitutive equations are discretized both in the 
physical space and in the random space, thus it needs 
modified solver of this coupled system of equations) and 
non-intrusive (regression based on repetitive calculation of 
deterministic FEM for selected realizations of X). In 
recent years, the special attention is given to non-intrusive 
approach with an emphasize on least-square minimization.  

3.1. Least-Square Minimization 

Assuming truncated PCE, there is an error ε due to missing 
terms in the definition of the truncated PCE:  

  ( )
,

( ) ( )
M pA

Y f fβ ε ε
∈

= = Ψ + = + α α
α

X ξ X . (10) 

 From the point of view of a regression, the PCE can be 
seen as a linear regression model with a constant term, thus 
deterministic coefficients can be simply obtained by 
minimization of ε by least-square regression (LSR). It is 
necessary to calculate sufficient number N of original 
model samples called experimental design with 
coordinates x and corresponding results y for accurate 
estimation of deterministic coefficients. The estimated 
coefficients β  are obtained by minimizing L2-norm:  

  ( ) 1T Tβ
−

= ψ ψ ψ y , (11) 

where data matrix ψ is 

  ( ){ }, ; 1,..., ; 0,..., 1i j j i i M j Pψ ψ ξ= = = = −ψ , (12) 

 The matrix ( ) 1T −
ψ ψ may be ill-conditioned, thus QR 

decomposition [4] should be employed for inversion. 
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3.2. Quality of Approximation 

 The crucial characteristic of non-intrusive LSR PCE is the 
accuracy of approximation. The common method for the 
measurement of accuracy is a coefficient of 
determination R2 between the original model and its 
approximation via PCE:  

  

2

2
2

1 ( ) ( )
1

Y

f f
NR

σ

 − 
= −

 x x
. (13) 

 However, R2 may lead to overfitting in the case of small 
sample size experimental designs [4]. Thus, more robust 
leave-one-out cross-validation Q2 should be used. The idea 
of the method is to use one set of sample points to build a 
PCE and another set to compute the error. Q2 sets one point 
apart from the full ED and builds a PCE from the 
remaining points. This process is repeated for every point 
of the experimental design. Due to the orthonormality of 
PCE, it is possible to analytically determinate Q2 directly 
from PCE assuming full ED [5] as 

  

2

2
2

1 ( ) ( )
1

1

i i

i

Y

f x f x
N h

Q
σ

 −
 − = −




, (14) 

where hi represents the i-th diagonal term of matrix 

( ) 1T T−
ψ ψ ψ ψ . 

3.3. Model Selection Algorithm 

Note that, the number of terms P is highly dependent on 
number of input random variables M and maximal total 
degree of polynomials p. Therefore, in case of a large 
stochastic model in combination with high maximal order 
of polynomials, it is easy to obtain computationally highly 
demanding problem. The solution can be utilization of 
advanced model selection algorithms e.g. Least Angle 
Regression (LAR) [6] or least absolute shrinkage and 
selection operator (LASSO) to find optimal set of PCE 
terms as proposed by Blatman and Sudret [5]. 

 Herein, developed SW tool [7] using automatic 
algorithm based on LAR was employed for numerical 
examples. LAR is an efficient model selection algorithm 
and it consists of several basic steps: 

• start with empty set of predictors, 

• select predictor most correlated with residual, 

• increase the coefficient of selected predictor in 
sign of its correlation with residual until another 
predictor has same correlation, 

• increase the coefficients of selected predictors in 
their joint least square direction, 

• repeat the algorithm until all predictors are 
included in the model or given accuracy of 
approximation is obtained. 

4. Statistical and Sensitivity 
Analysis 

Once the approximation in form of PCE is obtained, it is 
possible to perform efficient statistical and sensitivity 
analysis due to the orthonormality among terms as will be 
shown in this section. First of all, the m-th statistical 
moment of random variable Y= f(X) is generally according 
to basic theory of probability obtained as 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,

1 1
, ,

1

1 1
, ,

1

... ... ...

... ... ... .

M p

m m
M p M p

m

m m
M p M p

m

m
mm

A
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y f p d p d

p d

p d

ξ ξ

ξ

ξ

ξ ξ β ξ ξ

β β ξ ξ

β β ξ ξ

∈

∈ ∈

∈ ∈

 
= = Ψ =    

 

= Ψ Ψ =

= Ψ Ψ

 

 

  

α α
α

α α α α
α α

α α α α
α α

X ξ

ξ ξ

ξ ξ

(15) 

 This computation is not generally easy task, however 
in case of PCE it can be significantly simplified due to 
Eq. (2). Assuming orthogonality of basis functions, 
simplified formula for mean value is 

  
( ) ( )

( ) ( )
,

,

1

.

M p

M p

Y
A

A

y p d

p d

ξ

ξ

μ β ξ ξ

β ξ ξ
∈

∈

 
= = Ψ = 

 

= Ψ



 

α α
α

α α
α

ξ

ξ
 (16) 

 Moreover, considering that polynomials are orthogonal 
to 0 1Ψ ≡  and ( ) 0p dξ ξ ξΨ = ∀ ≠ α α 0 . Therefore, the mean 
value is first term of the expansion:  

  1
0Y yμ β= = .  (17) 

 Similarly, an orthogonality of polynomials leads to 
dramatic simplification of Eq. (10) for a second statistical 
moment:  

  

( ) ( )

( ) ( ) ( )

( ) ( )

,

1 2 1 2
, ,

1 2

, ,

2
2

22 2 , .

M p

M p M p

M p M p

A

A A

A A

y p d

p d

p d

ξ

ξ

ξ

β ξ ξ

β β ξ ξ

β ξ ξ β

∈

∈ ∈

∈ ∈

 
= Ψ = 

 

= Ψ Ψ =

= Ψ = Ψ Ψ



  

 

α α
α

α α α α
α α

α α α α α
α α

ξ

ξ ξ

ξ

  (18) 

 Once we have second statistical moment, variance can 
be simply computed as:  

  2 2 2.Y YYσ μ= −  (19) 

 Assuming orthonormal polynomials, a variance can be 
computed using Eq. (4) simply as:  

  
,

2 2

M p
Y

A

σ β
∈
≠

=  α
α
α 0

. (20) 

In other words, it is obtained as a sum of all squared 
deterministic coefficients except the first one (which is 
equal to mean value of mathematical model). 
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4.1. Analysis of Variance (ANOVA) 

Characteristic form of PCE can be utilized also in global 
sensitivity analysis represented by Sobol’ indices derived 
from Hoeffding-Sobol’ decomposition [8]. Let 
X=(X1,…,XM) be a random vector with independent 
margins and distribution denoted by

1
( ) ...

Mx xp p p= ⊗X x . For 

any M∈x  and any subset { }1,...,I M⊆ =u , xu is a subset of 
x, containing variables whose indices are included in u. 
According to Hoeffding-Sobol decomposition, any square 
integrable function f(X) can be decomposed as:  

 
( ) ( ) ( ) ( )

( )
{ }

0 1,2,...
1 1

0
1,...,

, ...

.

M M

i i ij i j M
i i j M

M

f f f x f x x f

f f
= ≤ < ≤

⊂
∅≠

= + + + + =

= +

 

 u u
u
u

x x

x
  (21) 

 The Hoeffding-Sobol’ decomposition is unique when 
there is the orthogonality between summands, i.e.:  

  ( ) ( ) { }0 , 1,..., ,f f M= ∀ ⊆ ≠  u u v vx x u v u v . (22) 

 In consequence of the defined decomposition, the 
variance of Y can be decomposed as:  

  [ ] ( )
{ }

2

1,...,
,Y

M
Var Y Var fσ

∅
⊂
≠

= =    u u
u
u

X ,  (23) 

where ( )Var f  u ux  are partial variances. The first Sobol’ 
indices are obtained if u contains single i-th input variable: 

  
( )
[ ]

i i
i

Var f X
S

Var Y
  = . (24) 

 The second-order indices correspond to two input 
variables, etc. Important information about influence of 
input variables and all interactions can by expressed by 
Total Sobol’ indices which includes all interactions, thus 
may be computed as:  

  T
i

i
S S

∈

= u
u

. (25) 

 A computation of Sobol’ indices by Monte Carlo is 
typically highly computationally demanding. Fortunately, 
there is a connection between PCE and Hoeffding-Sobol’ 
decomposition as was shown in [9]. In other words, PCE 
can be utilized for decomposition of Y= f(X) due to its 
special form (orthonormality of terms).  

 The PCE can be rewritten in form of Hoeffding-Sobol’ 
decomposition by reordering of the terms:  

  
( ) ( ) ( )

{ }
( )0 0

1,...,

PCE

M A
f f f

α
β β β

∅
⊂ ∈
≠

≈ = + = + Ψ 
u

u u α α
u
u

x x x ξ ,  (26) 

where set of multivariate polynomials dependent on u is 
defined as:  

  { }, : 0M p
kA A kα= ∈ ≠ ↔ ∈u α u . (27) 

 Therefore, it is possible to obtain Sobol’ indices of any 
order by simple analytical operation (sum of selected 
squared deterministic coefficients divided by variance). 
First order indices are thus obtained as 

  { }
2

,
2 : 0, 0iAPCE M p

i i i j i
Y

S A Aα
β

α α
σ

∈
≠= = ∈ > =

 α

α ,  (28) 

and total Sobol’ indices can be determined as 

  { }
2

, ,
2 : 0

T
iAT PCE T M p

i i i
Y

S A Aα

β
α

σ
∈= = ∈ >
 α

α .  (29) 

 Note that, these PCE based Sobol’ indices are highly 
dependent on truncation and sparsity of PCE. Although the 
results are not exact, it is possible to assume their 
convergence dependent on the accuracy of approximation.  

4.2. Analysis of Covariance (ANCOVA) 

There is a strong assumption of independent random 
variables for derivation of Sobol’ indices in section 
4.1, which may be not correct in practical applications. 
Therefore, this section is focused on generalization of 
Hoeffding-Sobol decomposition considering dependent 
variables. Due to the statistical dependence among input 
random variables, it is not possible to derive a unique 
decomposition in terms of orthogonal summands of 
increasing order. However, it is possible to cast the 
variance of Y as a covariance decomposition. More 
theoretical details can be found in [10]. Estimation of 
covariance decomposition via PCE consists of two steps: 

• building a PCE f(X) approximation assuming 
uncorrelated random variables 

• using the PCE as a surrogate model in order to 
evaluate the variance of output with the correlated 
input variables f(Xc) 

 The variance of the model response assuming 
correlated input random variables is defined as  

  ( ) ( ) ( )
{ }1,...,

,c c
M

Var f Cov f f
⊂

∅≠

=       u
u
u

X X X .  (30) 

 The covariance-based total sensitivity index cov
iS  is 

then obtained as:  

  ( ) ( )
( )

cov , c
i

c

Cov f f
S

Var f
  =

  

u X X
X

,  (31) 

which can be further decomposed into the sum of a 
structural (uncorrelated) sensitivity index u

iS  and 
correlative sensitivity index c

iS defined as:  

  ( )
( )

u
i

c

Var f
S

Var f
  =
  

u X
X

,  (32) 

  covc u
i i iS S S= − .  (33) 
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5. Numerical Examples 

Theory of PCE briefly presented in the previous sections 
is applied for the estimation of statistical moments, Sobol 
indices and failure probability in the following academic 
examples. The goal of this section is a presentation of PCE 
as a powerful efficient tool for an uncertainty 
quantification and a discussion of obtained results. The 
developed SW tool was employed for a practical 
computation of examples. 

5.1. Deflection of Simple Beam 

First academic example is the midspan deflection of a 
simply supported concrete beam with uniformly 
distributed load:  

  
4

/2 3
5

32L
qLv
EbH

= . (34) 

 The stochastic model contains five random variables 
with lognormal distribution with parameters from Table 1, 
where b and H represent the width and height of the 
rectangular cross-section, E is the Young`s modulus of the 
concrete, q is the intensity of uniform load and L is the 
length of the beam. 
Tab.1: Stochastic model of the first example-deflection of simple beam. 

Variable μ σ Units 

b ∼ LN 0.15 0.0075 [ m ] 

H ∼LN 0.3 0.015 [ m ] 

E ∼ LN 30 4.5 [ GPa ] 

q ∼ LN 10 2 [ kN / m ] 

L ∼ LN 5 0.05 [ m ] 

 

 The goal of this example is an estimation of statistical 
moments of vL/2 and failure probability for several given 
thresholds of maximal deflection. The reference solution 
in this simple academic example can be obtained 
analytically. The PCE was created using LAR in 
combination with experimental design containing 100 
samples generated by LHS and maximal order of 
polynomial basis was set as p=4. Estimated statistical 
moments and reference analytical solution can be seen in 
the following table: 
Tab.2: Statistical moments obtained by PCE and analytical solution. 

Parameter PCE (ED=100) Analytical solution 

μ 8.366 8.367 

σ2 6.429 6.443 

 As can be seen, an estimation of statistical moments 
using PCE is very close to exact values. Note that, these 
values are obtained directly from PCE coefficients, thus it 
is very efficient approach in combination with 
computationally demanding mathematical models, e.g. 
non-linear finite element models.  

 The second task of this example is an estimation of 

failure probability for several thresholds and obtained 
results can be seen in Tab. 3. It is obvious, that estimated 
failure probabilities (using PCE as a surrogate model by 
Monte Carlo technique) are almost exact. 
Tab.3: Comparison of failure probability estimated for the original 

model and the PCE. 

Threshold PCE  Analytical solution 

15 mm 1.716 e-2  1.721 e-2 

20 mm 1.017 e-3 1.019 e-3 

25 mm 6.250 e-5 6.232 e-5 

30 mm 4.300 e-6 4.268 e-6 

 

5.2. Analysis of Covariance of Simple 
Analytical Function 

Second academic example is the polynomial analytical 
function with two standardized normal input random 
variables ( )1 2, 0,1X X N :  

  2
1 2 2 1 2 3Y X X X X X= + + + + . (35) 

 The main task of this example is a study of ANCOVA 
based sensitivity indices assuming increasing correlation 
coefficient ρ between random variables. The PCE was 
created using LAR in combination with experimental 
design containing 20 samples generated by LHS and 
maximal order of polynomial basis was set as p=2. Due to 
the polynomial form of model, it was possible to reach 
perfect accuracy of PCE represented by Q2=1. Obtained 
first order sensitivity indices can be seen in Tab. 4. 
Tab.4: ANCOVA indices obtained by PCE for increasing correlation. 

Correlation cov
1S  1

uS  1
cS  cov

2S  2
uS  2

cS  
ρ=0 0.20 0.20 0.00 0.60 0.60 0.00 

ρ=0.2 0.19 0.17 0.02 0.59 0.51 0.08 

ρ=0.8 0.19 0.10 0.09 0.52 0.29 0.23 

 

 As can be seen from obtained first order ANCOVA 
indices, the structural parts of indices u

iS decrease with 
increasing correlation between X1 and X2 and the influence 
of correlative parts c

iS  is higher, as can be generally 
expected. Moreover, interaction between correlated 
variables is more important with increasing correlation, 
which can be recognized by decreasing of total first order 
sensitivity indices cov

1S .  

 In case of uncorrelated variables, ANCOVA indices 
reduce to ordinary Sobol’ indices. It means that, ANCOVA 
indices are generalization of ordinary Sobol’ indices and 
the method works for correlated as well as uncorrelated 
input random variables. Nonetheless, interpretation of 
ANCOVA indices for more complicated models may not 
be so straightforward. 
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6. Conclusion and discussion 

The paper presents polynomial chaos expansion as a 
powerful tool for uncertainty quantification. First of all, 
basic theoretical background is given and practical 
computation is discussed. It is also shown how to derive 
first statistical moments and Sobol’ indices directly from 
explicit function in form of polynomial chaos expansion 
with orthonormal terms. Presented theory is applied on 
academic examples and obtained results are discussed. As 
can be seen, stochastic spectral methods are efficient and 
robust, thus their employment for uncertainty 
quantification may be beneficial, particularly for time-
consuming mathematical models, whereas application of 
standard Monte Carlo type technique is not even feasible. 
Herein, in analytical examples were assumed Gaussian and 
Lognormal distributions, which are directly associated to 
Hermite polynomials, however in practical cases it is 
common to work with different type of distributions (e.g. 
Gubmbel). In such case, the convergence of PCE might be 
slower and additional sample points in ED might be 
necessary to achieve target accuracy. Therefore, Nataf 
transformation to standardized Gaussian space is crucial 
step. Note that, it is not possible to apply Nataf 
transformation assuming Gaussian copula for some 
combinations of input variables and correlation 
coefficients and more general approach based on copula 
theory should be employed. Moreover, in practical 
applications it is common to work with high-dimensional 
stochastic problems and in that case, it might be 
problematic for LAR to identify the best PCE basis and 
different model-selection algorithm might be employed. 
Further research work will be focused on development of 
general transformation technique based on copula theory 
and its application on more complicated examples. 
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