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Abstract 

The paper deals with the relationship between the target probability, number of applied 
random variables and the number of Monte Carlo simulation steps needed to obtain satisfactory 
results. The precision of probability of failure estimation using crude Monte Carlo simulation is 
independent of the number of random variables in a studied case. Results obtained by Monte Carlo 
simulation are compared with Direct Determined Fully Probabilistic Method (DDFPM) that allows 
for fast computing solutions in the case of well-mapped tasks. 
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Abstrakt 

Příspěvek se zabývá vztahem mezi cílovou pravděpodobností, počtem náhodně proměnných 
a počtem simulací Monte Carlo nutných k získání uspokojivého výsledku. Je zjištěno, že u přímé 
metody Monte Carlo ve studovaném případě nezávisí přesnost odhadu pravděpodobnosti poruchy na 
počtu náhodných veličin. Výsledky získané Monte Carlo simulací jsou porovnány s řešením pomocí 
přímého determinovaného pravděpodobnostního výpočtu (PDPV), přičemž užití PDPV může vézt u 
dobře zmapovaných úloh k rapidní úspoře výpočetního času. 

Klíčová slova 

Simulace Monte Carlo, Pravděpodobnost, Nutný počet simulací, Inženýrská spolehlivost, 
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1 INTRODUCTION – PROBABILITY OF FAILURE AS RANDOM 
VARIABLE 
If we analyze the engineering reliability with simulation tools such as Monte Carlo, used for 

example in SBRA (see [6], [5]), which use random number generators to estimate the probability of 
failure, it is necessary for the resulting probability estimation to be also regarded as a random variable 
(see e.g., [10], [11], [1] and [9]). 

The precision of the probability of failure estimation by the Monte Carlo is dependent on the 
target probability of failure and the number of simulation steps, see e.g., [10], [11], [1]. While 
applying the direct Monte Carlo method, the number of random variables in the general form should 
have no effect on the error of estimation of the target probability (see [10], [11]). In [4] study, the 
verification for the target probabilities Pt = 1×10-2, Pt = 1×10-3, Pt = 1×10-4 a Pt = 1×10-5 was carried 
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out in binary histograms. There was no relationship between the number of histograms and the 
precision of estimation of the probability of failure observed. 

The paper aims to verify whether the number of random variables of the general form does not 
affect the precision of the target probability estimation using the direct Monte Carlo. The Monte 
Carlo computation is compared with the DDFPM method computation [2] [3]. 

2 METHODOLOGY 
The principle of numerical experiments to verify the relationship between the number of 

random variables and the precision of estimation of the Monte Carlo simulation is as follows: If we 
create an example where the target probability of failure is known, then it is possible to verify the 
accuracy of the computation of this probability in Monte Carlo. Each Monte Carlo simulation of a 
given number of steps is viewed as one sample. These samples can be statistically evaluated if the 
sufficient quantity is obtained, and is done so for different numbers of simulation steps. 
2.1 Product of histograms 

As a model example the product of binary histograms used in study [4]  is listed. The aim of 
this work was to verify the relationship between the number of random variables and the precision of 
estimation using simulation on the examples of the product of binary histograms with the known 
accurately computable probability. Example of the product of two histograms is shown in the Figure 
below. The probability of occurrence of 1 in the final product of RF is 1/100. 
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Fig.1: Product of two histograms RF = X1×X2  

The probability is analyzed using the Monte Carlo simulation. It uses Matlab and simulation 
tool with its core formed by P. Praks, see [7] and [8]. 

The stochastic nature of the failure probability estimation is pointed out in Fig. 2, which shows 
the distribution of failure probability for the 300 calculations of the probability of failure P = 1/100 
estimated (N = 102, 103.. 105). Variance of estimation decreases with an increase in the number of 
simulation steps. 
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Fig. 2 Estimated probability of failure Pf (vertical axis) as a random variable estimated 300 times, 
depending on the number of Monte Carlo simulations (horizontal axis), the target probability Pt is 
1/100 

2.2 Sum of histograms 
Using the Central Limit Theorem (CLT) it is possible to create a normal distribution (see e.g., 

[12]) from the general number of identical independent random variables, where the mean and 
standard deviation are known. A prerequisite is the I sum of the x distributions with the same 
distribution curve. The sum is the normal distribution of X: 

 
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where: 
I a number of the same, statistically independent distributions of xi, 
xi distribution with mean μx,i, and standard deviation σx,i, 
X the resulting distribution with mean μX, and standard deviation σX, which converges to a 

normal distribution with a sufficiently large amount of input distribution of x i (and hence for 
the large I). 

 
The mean μX of the resulting normal distribution X is equal to the mean μx of the random 

variable input. The standard deviation σX of the resulting file depends on the input standard deviation 
σx,i , and indirectly dependent on the square root of the number of random variables I : 
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If we obtain the parameters of normal distribution, we can construct its distribution function 
and determine its value for a selected probability of dropping below the mean. In the acquired normal 
distribution with the mean μX and standard deviation σX, it is possible to derive from its inverse 
distribution function corresponding boundary values Xh for the selected probabilities of not exceding 
(e.g., Pt = 1×10-4, Pt = 1×10-3a Pt = 1×10-2). 

 ( )th PX 1−Φ=  (3) 
Acquired normal distribution can therefore be advantageously used to test dependence of the 

number of random variables on the precision estimation of the Monte Carlo method because the 
tested probability PI is equaled to: 
 ( )0P , ≤−= XXP hII  (4) 
where: 
PI sought probability for the I of considered histograms,  
 
X the resulting normal distribution with μX and standard deviation σX, 
 
XI,h boundary value of the distribution X for I of random variables. 
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Fig. 3 Diagram of the calculation of one set of inputs for the parametric study. The mean μPI as well 
as the standard deviation σPI of the estimated probability correspond to a selected number of 
simulation steps 10N, the number of histograms I, the target probability k, while the number of 
samples is marked n. 
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3 NUMERICAL EXAMPLES 
3.1  Sum of random variables – Central Limit Theorem (CLT) 

To verify the precision of Monte Carlo simulations using the Central Limit Theorem (CLT) a 
bounded normal distribution is used (see Fig. 4). 

 

 
Fig. 4 Probability distribution of random input variables xi - histogram normal3.dis  

(See [5]);σx,i = 0.9969, μx,i = 6.224×10-17 ≈ 0, <-3.5..3.5> 

Summing up any number of independent implementations of the selected distribution 
according to equation (1), a normal distribution with a standard deviation as described in (2) can be 
obtained. Boundary values of the resulting normal distribution X, necessary to verify the precision of 
the Monte Carlo simulations are given in Table 1. 

 
Table 1: Boundary values and statistical parameters of the resulting normal distribution X 
corresponding to the assumed probabilities of not exceeding Pt and a number of random variables N. 

I σX μX 
Boundary values of resulting 

distribution XI,h 

Pt = (1×10-2) Pt = (1×10-3) Pt = (1×10-4) 

5 0.445827 0.00E+00 -1.03715 -1.37772 -1.65824 

10 0.315247 0.00E+00 -0.73337 -0.97419 -1.17255 

20 0.222914 0.00E+00 -0.51857 -0.68886 -0.82912 

 
The relationship (5) indicates an estimate of the probability P5 using Monte Carlo for 5 

histograms and a target probability Pt = 1×10-4. 

 ( ) ( ) 4
555 10101.65824P0P −×≈≤−=≤−= XXXP ,h   (5) 

It should be noted that the resulting probabilities PI for 5 and 10 random variables are slightly 
undervalued. This imprecision is acceptable with respect to the set target. Analogously, it is possible 
to derive the calculation for 10 and 20 used histograms, and further for Pt = 1×10-3 and Pt = 1×10-2. 

 3.1.1 Probability of failure Pt = 1×10-4 

The following graph shows the relationship between the number of simulation steps applied 
and estimate variance of the probability of failure PI. The estimated probability of failure is assessed 
using the Monte Carlo simulation tool. The probability Pt = 1×10-4 approximately corresponds to the 
value applied to the ultimate limit states (Pd = 0.7×10-4), and is estimated using 5, 10 and 20 
histograms. Outline of the exact solution shows the relationship (5). 
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Each probability is estimated for a selected number of simulation steps (N = 103, 104.. 106) 50-
times and subsequently statistically evaluated. Intermediate values are connected by an axis. The 
graph in Fig. 5 contains the mean value as well as confidence interval limits. The estimate variance of 
the probability of failure ± 20 percent is considered, and it is done so with a 90 percent level of 
reliability. The required precision of the estimate when Pt = 1×10-4 can be achieved with 
approximately 676,000 simulation steps, shown in the following formula (see [11], [4]): 
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Fig.5 The probability of failure Pf as a random variable depending on the number of Monte Carlo 

simulations. The exact probability of failure Pt = 10-4. 
(P20 - 20 histograms, P10 - 10 histograms, P5-5 histograms) 

The result of numerical simulation in Fig. 5 shows that the number of histograms does not 
affect the precision of the estimate on the number of simulation steps. Means and variances of the 
resulting probabilities  P5, P10, and P20 do not differ significantly for 105 and 106 simulation steps, 
which corresponds to the recommended 676,000 simulations. 

 

 3.1.2  Probabilities of failure Pt = 1×10-3 a Pt = 1×10-2 

When estimating the probabilities Pt = 1×10-3 a Pt = 1×10-2, we are obtaining the same results  
as in the previous paragraph, see Fig. 6 and Fig. 7. The number of histograms does not affect, even in 
those cases, the precision of the estimated probability. 
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 3.2 Results and Time of Calculation 
Tab. 2 shows the calculated probabilities as well as the time needed to estimate the probability 

of failure. Time of calculation is shown for the Monte Carlo simulation and for the necessary number 
of simulation steps using Anthill programme.  

 

 
Fig. 6 The probability of failure Pf as a random variable depending on the number of Monte Carlo 

simulations. The exact probability of failure Pt  = 10-3. 
(P20 - 20 histograms, P10 - 10 histograms, P5 - 5 histograms) 

 
Fig. 7 The probability of failure Pf as a random variable depending on the number of Monte Carlo 

simulations. The exact probability of failure Pt  = 10-2. 
(P20 - 20 histograms, P10 - 10 histograms, P5 – 5 histograms) 
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This time is compared with the time of calculation obtained with the Direct Determined Fully 
Probabilistic Method (DDFPM, see [2] and [3]) using the ProbCalc programme. In all cases 
examined, the required probability was in the expected range of ± 20%, using both Monte Carlo 
method and DDFPM. It should be noted that for purposes of comparing computing time with Anthill, 
the definition of limit state using the DLL library is not used for the computation using ProbCalc. 
Time required for the computation using DDFPM method is dependent on the selected solution 
method. In the case of a simple combination of all histograms of 256 classes, 1,1×1012 of simulations 
for 5 random variables would come into consideration, which would correspond to approx. 239 days 
of computation. To consider the simple sum of 20 variables is therefore unthinkable, because the 
computational complexity dramatically increases with the higher number of variables. For the 
computation itself using DDFPM method, there needs to be an adequate strategy. If individual 
random variables before the computation itself are added together, i.e. the Combination option in the 
ProbCalc programme [3], a drastic decrease in computational complexity occurs. Time of calculation 
is then in all considered cases equaled to less than 1 second. 

 

Table 2 Comparison of target probabilities Pt with calculated probabilities PI for the I histograms, 
including the simulation time using Monte Carlo direct method and DDFPM method. 
Monte Carlo shows a mean and confidence interval of 50 resulting probabilities. 

Pt 

Monte Carlo (Anthill) DDFPM (ProbCalc) 

∅PI± PI,90 
Number of 

steps 
Time 

[sec] 
PI Description 

Time 

[sec] 

1x10-2 

5 (0.97±0.17) ×10-2 6.7 thous. 1 0.97×10-2 

 

The sum of 
random 

variables carried 
out using 

combination 
method. The 

calculation was 
carried out 

without 
optimization 

<1 

10 (0.97±0.16)×10-2 6.7 thous. 1 0.99×10-2 <1 

20 (1.0±0.13)×10-2 6.7 thous.. 1 0.92×10-2 <1 

1x10-3 

5 (0.98±0.18)×10-3 67.5 thous. 11 0.93×10-3 <1 

10 (0.98±0.17)×10-3 67.5 thous. 11 0.96×10-3 <1 

20 (0.99±0.14)×10-3 67.5 thous. 11 0.94×10-3 <1 

1x10-4 

5 (0.90±0.15)×10-4 675.3 
thous. 110 0.86×10-4 <1 

10 (0.94±0.15)×10-4 675.3 
thous. 110 0.93×10-4 <1 

20 (0.97±0.13)×10-4 675.3 
thous. 110 0.91×10-4 <1 

3 CONCLUSION 
The paper suggests that the estimated probability of failure is also a random variable under the 

use of direct Monte Carlo. It has been found that under the direct Monte Carlo method in the example 
studied the precision of estimate of the probability of failure does not depend on a number of random 
variables. The paper verifies that the precision of estimate using Monte Carlo is affected by the size 
of the target probability Pt and the number of applied simulation steps, as indicated in, i.a., [11]. If the 
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number of simulation steps is sufficiently large, it is possible to describe distribution of the 
probability of failure Pt by the normal distribution. Based on the normal distribution of the estimate 
of the probability of failure it is possible to estimate the required number of simulation steps to 
achieve the desired precision, and/or to estimate the precision of the result obtained (confidence 
interval). 

Comparative solution using the DDPFM method resulted in obtaining satisfactory 
probabilities of failure, which similarly to the results obtained by the Monte Carlo, were within an 
expected tolerance. While using the DDPFM method, it is important to select the right solution 
strategy, in order to that time of calculation can be significantly reduced. In case of the well-mapped 
tasks, using the DDPFM can significantly save calculation time, even in comparison with direct 
Monte Carlo. 

Further works should be focused on the direct comparison of the direct Monte Carlo method 
and the more advanced Monte Carlo methods of the Importance Sampling and Latin Hypercube 
Sampling type, with regard to a number of random input variables and a required number of 
simulation steps. 

ACKNOWLEDGEMENTS 
The project was implemented with financial support through the Grant Agency of the Czech 

Republic. The registration number of the project GA CR 105/07/1265. 

REFERENCES 
[1] FEGAN, G. Chapter: „Precision Of Simulation Results.“ in [5], 2003. 
[2] JANAS, P., KREJSA, M. Chapter 24.5 Using a Direct Determined Probabilistic Solution in 

the Framework of SBRA Method. In CD-ROM of [5], 2003. 
[3] JANAS, P., KREJSA, M. Numerický výpočet pravděpodobnosti užitím useknutých 

histogramů při posuzování spolehlivosti konstrukcí (Numericla computation of probability 
usány bounded histograms applicable in the structural reliability assessment). In Sborník 
vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava, 2002, vol. II., (č. 1), s. 
47-58. ISSN 1213-1962 (in Czech). 

[4] KONEČNÝ, P. Přesnost odhadu pravděpodobnosti poruchy (Precison of the probability of 
failure estimation), In Sborník vědeckých prací Vysoké školy báňské - Technické univerzity 
Ostrava. Číslo 1, rok 2008, ročník VIII, řada stavební, článek č. 33, pp. 333-344, 2008, ISBN 
978-80-248-1883-2, ISSN 1213-1962 (in Czech). 

[5] MAREK P., BROZZETTI J., GUŠTAR M., TIKALSKY P., Editors. Probabilistic Assessment 
of Structures using Monte Carlo Simulation. Basics, Exercises, Software, (Second extended 
edition). Publisher: ITAM Academy of Sciences of Czech Republic, Prosecká 76, 190 00 
Prague 9, Czech Republic, 2003. ISBN 80-86246-19-1. 

[6] MAREK, P., GUŠTAR, M., BATHON, L. Simulation-Based Reliability Assesment for 
Structural Engineers. Boca Taton, Florida, CRC Press, 1995, ISBN 0-8493-8286-6. 

[7] PRAKS, P. Numerical aspects of Simulation Based Reliability Assessment of Systems. In 
International Colloquium Euro-SiBRAM’2002. Volume II. ITAM, Academy of Sciences of 
the Czech Republic, Prague, 2002. ISBN 80-86246-17-5. 

[8] PRAKS, P. Analýza spolehlivosti s iteračními řešiči. Doctoral dissertation thesis, VŠB – 
Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, 
Department of Applied mathematics, December, 2005. 

[9] PRAKS, P., KONEČNÝ, P. Chapter „Direct Monte Carlo Method vs. Improved Methods 
Considering Applications in Designers Every Day Work“ in CD-ROM of [5], 2003. 



10.2478/v10160-010-0021-4 

65 

[10] SHOOMAN, M.L. Probabilistic Reliability: An Engineering Approach. MCGRAW-HILL, New 
York, 1968. 

[11] SCHUËLLER, G. Past, present & Future of Simulation-based Structural Analysis In 
International Colloquium Euro-SiBRAM’2002. Volume II. Institute of Theoretical and 
Applied Mechanics, Academy of Sciences of the Czech Republic, Prague, June 2002. ISBN 
80-86246-17-5. 

[12] MATH WORLD – Central Limit Theorem - 
http://mathworld.wolfram.com/CentralLimitTheorem.html 

Reviewer: 
Ing. Miroslav Sýkora, Ph.D., CTU in Prague - Klokner Institute 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /CZE ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


