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Abstract 

The paper deals with an analysis of the stress and displacement fields in a cracked body. 
The intention of the authors is to determine the sufficient number of terms of the Williams power 
series for an accurate approximation of the near-crack-tip fields which can be subsequently used e.g. 
for estimation of the extent of the fracture process zone in quasi-brittle materials. Values of 
coefficients of these terms are determined via regression from results of numerical simulations; the 
coefficients are expressed as functions of the relative crack length. The analysis is conducted on a 2D 
numerical model of the wedge-splitting test on a modified standard cube-shaped specimen used 
commonly for testing of cementitious composites; ANSYS FE computational system is employed. 
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Abstrakt 

Příspěvek se zabývá analýzou polí napětí a deformací v tělese s trhlinou. Záměrem autorů je 
určení dostačujícího počtu členů Williamsova mocninného rozvoje pro přesnou aproximaci těchto 
polí v okolí vrcholu trhliny využitelnou dále např. pro odhad rozsahu lomové procesní zóny 
v kvazikřehkých materiálech. Hodnoty koeficientů těchto členů jsou určovány regresí z výsledků 
numerických simulací; jsou vyjádřeny jako funkce relativní délky trhliny. Řešeným případem je 
lomový test štípání klínem upraveného standardního krychlového tělesa pro zkoušení cementových 
kompozitů; numerická studie je provedena v MKP výpočetním systému ANSYS. 

Klíčová slova 

Těleso s trhlinou, pole v okolí trhliny, Williamsova mocninná řada, členy vyšších řádů, MKP, 
lomová procesní zóna, kvazikřehký lom. 

 1 INTRODUCTION, GOALS 
Fracture behaviour of the quasi-brittle building materials (e.g. concrete, ceramics) is studied 

via experiments on test specimens with stress concentrators (especially notches). In these tests 
(destructive ones in most cases) the specimens are loaded in different tensile/compressive/bending 
modes in order to determine the fracture-mechanical properties and parameters of models which are 
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utilized for numerical simulations of the fracture phenomena. It should be noted that these tests are 
very time consuming and also very costly. Obviously, the motivation of the research is to reduce the 
number of required real tests for estimation of fracture properties of the investigated material by 
using numerical simulations. In other words, relatively less expensive numerical modelling can be 
employed for investigation of different aspects of failure phenomena occurring in tests on real 
specimens. 

Description of fracture of quasi-brittle materials is very problematic (reviewed e.g. in [1−4]). 
It has been shown that for the correct interpretation of the tensile failure phenomena in quasi-brittle 
materials the existence of the so-called fracture process zone (FPZ) in front of the crack tip must be 
considered. The FPZ changes its shape and size during the crack propagation [5−9]. It is also 
necessary to take into account the boundary conditions in the analysis of the numerical model of the 
test specimen which considerably influence the FPZ extent. The investigation of the FPZ existence 
and its characteristics is still an actual research topic, both in the experimental [10−15] and 
computational [15−18] field. 

In the recent studies by the authors [19−23], the suitability of the regression technique, 
referred to as the Over-Deterministic Method (ODM [24]), utilized to obtain the values of the 
coefficients of the higher members of the Williams power series [25] for bodies with cracks during 
the Wedge-splitting Test (WST) was tested. Principle of the ODM is based on the solution of an over-
deterministic systems of algebraic equations (application of the least-squares method) expressed from 
the formulae for the displacement field in a body with crack via Williams power series. Coordinates 
of selected set of nodes of the used finite element mesh as well as their displacements (calculated e.g. 
using common commercial finite-element software) serve as inputs to the system of equations. 
Obtained values of the coefficients of the terms of Williams series can be then expressed as functions 
of the crack length. After specification of these values by the level of the applied stress, the 
dimensionless expressions of the coefficients of the series’ terms are obtained, which are referred to 
as the shape functions. These functions can then be re-used for analytical reconstruction of the stress 
and displacement fields (by placing its values into the Williams power series expressions). 

In this paper, the authors deal with the accuracy of the above-mentioned shape functions, 
especially for the higher-order terms of the Williams power expansion (which characterize the 
influence of applied boundary conditions). Several variants of the selection of nodes near the crack 
tip (their number and the distance from the crack tip) were considered. 

 2 STRESS AND DISPLACEMENT FIELDS IN THE BODY WITH CRACK 
 2.1 Williams power expansion 

The stress and displacement fields in a homogeneous isotropic body with a crack can be 
expressed as an infinite power series − Williams expansion [25]. The stress tensor {σ} and 
deformation vector {u} can be written for the isotropic elastic body with a crack as follows: 
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where: 
r, θ – polar coordinates (the origin of the coordinate system is situated in the crack tip, the x axis is 

oriented in the direction of the crack propagation) [m], 
μ – shear modulus (μ = E/(2(1 + ν)) [Pa], 
κ – Kolosov's constant (κ = (3 – ν)/(1 + ν) for plane stress and κ = (3 – 4ν) for plane strain) [-],  
E, ν – Young's modulus and Poisson's ratio, [Pa] and [-], respectively, 
An – coefficients of the terms of the series, constants for a particular value of the crack length 

[Pa/mn/2−1], and 
n – index of term of the power expansion [-]. 

Values of coefficients An can be expressed as functions of the relative crack length and are 
normed by the applied load – thus the dimensionless shape function gn are defined [26–27]. 
Following formulas correspond to the individual coefficients of terms of the Williams series: 
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where: 
α – is the relative crack length (α = a/Wef) [-], 
σ – is the nominal stress in the central plane of the specimen caused by the applied load 

(σ = Psp/BW) [Pa], 
W – is width of the test specimen [m], and  
B – is its breadth [m]. 

The individual dimensions of the WST specimen are indicated in the sketch of the test 
configuration in Fig. 1a. 

 2.2 Over-Deterministic Method 
The computational technique which is used for solving the system of equations resulting from 

eq. (2) is referred to as the Over-Deterministic Method (ODM, [24]). Mathematically, the ODM is 
based on the formulation of linear least-squares, and its aim is the solution of the system of 2k 
equations, where k represents the number of selected nodes around the crack tip for first N selected 
terms of the power series. From knowledge of the components of the displacement vector u a v in 
k selected nodes of the finite-element mesh (typically from a finite elemental solution using common 
available computational software) and from knowledge of the coordinates of these nodes, we can 
evaluate equation (2) for N terms of the series, so that N ≤ 2k. The solution of the resulting over-
deterministic system of equations (4) by the least-squares formulation (schematically written in 
equation (5) and (6)) leads to the vector of coefficients of terms of the series An (respectively the 
corresponding shape functions gn): 
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where: 
{U} – represents vector of displacements u and v in chosen set of nodes of the FE mesh, 
[F] – is matrix of geometrical functions, dependent on the polar coordinates of FE nodes (see 

eq. (2)), 
{A} – represents vector of the desirable coefficients of the Williams expansion. 

 3 NUMERICAL ANALYSIS 
 3.1 Computational model 

For the analysis of the stress and displacement fields, a numerical model of a typical test 
specimen used for wedge splitting test (WST, [28]) was considered. It is a cube with the edge length 
equal to 100 mm provided with a groove and a notch. The test geometry with description of the 
specimen dimensions is shown in Fig. 1a. The configuration with one support (located in the center of 
the bottom side) and two components of the loading force, acting on the steel loading plate (the load 
transmitted via the wedge can be decomposed into the horizontal and the vertical force, see Fig. 1b). 
was considered 

The numerical model was created in ANSYS FE computational system [29]. The propagating 
crack (of zero width) was simulated by keeping the nodes related to the crack face free of any 
constraint; whereas all degrees of freedom of the nodes on the resting ligament were removed (a 
symmetric half of model was used). The FEM model was created from the eight-node quadrilateral 
isoparametric finite elements (PLANE 82); the crack-tip singularity was taken into account via using 
triangular crack elements with the mid-side node moved to 1/4 of the length of the triangle side (see 
details in Fig. 2 right). The elastic isotropic continuum was used for both of the material model for 
test specimen (concrete, modulus of elasticity E = 35 GPa, Poisson's ratio ν = 0.2) and for steel plates 
(E = 210 GPa, ν = 0.3). 
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 3.2 Variants of conducted study 
As was mentioned above, for the calculation of the shape functions gn related to the specific 

relative crack length α (by ODM), it is necessary to select a set of nodes of the FE mesh. There were 
considered several variants of the FE nodes selection in the present numerical study, they varied in 
count of the nodes and their distance from the crack tip: Three variants of the node selection set size k 

 

b) c) 

Fig. 1: a) Wedge splitting test geometry, b) statics scheme with 
boundary conditions, c) computational model with FE mesh 

a) 
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 FEM model Detail of the FE mesh around the crack tip 
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Fig. 2: The used finite element mesh for the entire model (left) and the detail of the mesh around the 
crack tip (right) for selected variants of the analysis: a) 21 nodes with radius of 0.5 mm, b) 49 nodes 
with radius of 2 mm, c) 33 nodes with radius of 4 mm, d) 49 nodes with radius of 8 mm, c) 33 nodes 

with radius of 12 mm 

were taken into account (21, 33 and 49 nodes, which correspond to 10, 16 and 24 equal parts of the 
area around the crack tip, see Fig. 2). The distance from the crack tip (or radius of the ring for the 
selection of FE nodes rring) was considered in the values of 0.5, 2, 4, 8 and 12 mm. Selected variants 

b) 

c) 

e) 

d) 

a) 
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of the used numerical models for different crack length are shown in Fig. 2, together with details of 
the FE mesh and monitored nodes around the crack tip. Note that the numerical model was made 
parametrically (using macros) for the purpose of the automatic run of the FEM analyses for different 
values of the crack length during which the computed results were recorded into an output data file. 
For some values of the model defining parameters (especially for the relative distance of the nodal 
ring from the crack tip greater than 4%), an unsuitable shape of the FE mesh has been observed. 
However, the used computational tool (sw. ANSYS) reported no inappropriate mesh for these 
variants. Note that the absolute expression of the values of the ring radius rring used in this paper have 
to be considered in relation to the length of the cube edge W. Equivalently, it would be also possible 
to use the relative lengths of the radii (normalized by the W value). 

The ODM technique was implemented in MathCAD, further evaluation was performed in 
MS Excel. 

 4 DISCUSSION OF RESULTS, CONCLUSION 
Evaluation of all 15 considered variants of the model is summarized in Tab. 1 which shows 

the highest index n of the constructed shape function gn that can be used for a sufficiently accurate 
approximation of the stress and displacement fields. 

The process of determination of the value of this index is illustrated via comparison of Fig. 3 
and Fig. 4, where the curves (shape functions gn depending on the relative crack length α) are 
compared for all considered variants of the selected node numbers and their distances from the crack 
tip – a smooth curves represent the sufficiently accurate result of the selection variants, whereas the 
fluctuation of the values of the function indicates significant relative error. Fig. 3 illustrates the 
course of the g4 shape function for all considered configurations. There can be seen that all of them 
form a “smooth” curve – i.e. results of any of the fifteen considered variants can be used for the 
(re)construction of the stress and displacement fields in the specimen (using the first four shape 
functions/terms of Williams expansion). Contrary, significant fluctuations of the curves of shape 
functions for variants which have the distance of the selected nodes from the crack tip rring = 0.5 mm 
can be seen in Fig. 4. Fig. 5 and Fig. 6 display only those functions that have smooth course (the 
other unsuitable variants are removed). In this way, the highest index of the sufficiently accurate 
shape function was selected for Tab. 1. 

The determination of the sufficient accuracy of approximation is therefore based only on 
visual monitoring of the shape function course. However, this technique proved suitable in the 
present analyzes of this research task. And contrary, the “unbiased” criteria (based on the assessment 
of the accuracy of some type of normalized expression) fails due to the large gradient of the shape 
functions at the edges of their definition interval (normalization by the absolute value is not feasible), 
or due to very low values of the functions in some points of the definition interval (for values of 
functions close to zero − relative normalization is not feasible). 

Tab. 1: The highest index n of the sufficiently accurate shape function for various FE nodes 
selections 

k \ rring 0.5 mm 2 mm 4 mm 8 mm 12 mm 

21 4 5 7 8 9 

33 4 6 8 9 10 

49 4 7 9 10 - 

From the comparison of the graphs in these figures it is clear that the increase in number of the 
selected nodes leads better accuracy of the desired shape functions of the coefficients of the higher 
terms of the series. The larger is the distance from the crack tip rring the more this effect is 
pronounced. In other words, it is necessary to take into account results for variants with a larger 
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number of nodes k when higher maximum index n of the series is desired (at the requirement of 
maintaining a sufficient accuracy). This fact holds, in particular, for variants with greater distances 
rring of the FE node selection from the crack tip. 

A possible disadvantage of the nodes selection from a greater distance from the crack tip 
consists in a limited range of the relative crack length for which the shape function can be evaluated. 
Given the way of the FEM mesh creation around the crack tip (a semicircular area, at boundaries of 
whose the nodes for ODM are selected), the values of the shape functions for very short and very 
long cracks are not calculated in the FE analysis (see such a mesh in Fig. 2d and 2e). This 
disadvantage, according to the authors, can be resolved by creating a procedure for selecting the 
nodes from a more flexibly defined area. A technique of the FE nodes selection, defined in the 
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Fig. 3: Course of the g4 shape function for all considered variants of the FE nodes selection 
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Fig. 4: Course of the g6 shape function for all the considered variants of the FE node selection 
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Fig. 5: Course of the g7 shape functions for the accurate enough variants of the FE nodes selection 
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Fig. 6: Course of the g9 shape function for the accurate enough variants of the FE nodes selection 

computational environment of the FEM program ANSYS, will be based on the length of the 
crack/ligament (i.e. the distance from the crack tip to the front or back surface of the body) or other 
free boundaries of the body. A possibility of improving the obtained results by using multiple layers, 
from which the nodes are selected, will be investigated. This procedure is currently being developed. 

The relevance of the obtained results will be further investigated using alternative ways of the 
FE mesh creation, especially in the vicinity of the crack tip. Note that the use of ODM for 
determination of the coefficients of the higher order terms of the Williams power series for 
approximation of the stress and displacement fields in the body with a crack must be further explored. 
It shall be done particularly with regard to the accuracy of the coefficients of terms with high indices 
(e.g. n > 10) and the necessity/appropriateness of their use in analytical reconstruction of these fields 
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to estimate the extent of the zone of material failure. Analysis of the reconstructed stress fields with 
their comparison with the numerical solution is currently being processed and prepared for 
publication. 
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