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Abstract 

The paper is focused on the model uncertainty related to shear resistance of reinforced 
concrete beams without special shear reinforcement considering available test results. Variation of 
the model uncertainty with basic variables is analysed and significant variables are identified for the 
section-oriented formula provided in EN 1992-1-1. Proposed probabilistic description of the model 
uncertainty consists of the lognormal distribution having the coefficient of variation of 0.15 and the 
mean value varying from 0.9 to 1.05 for beams with light to heavy longitudinal reinforcement. 
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Abstrakt 

Článek se zaměřuje na stanovení modelové nejistoty smykové odolnosti železobetonových 
nosníků bez smykové výztuže s využitím dostupných experimentálních měření. Analyzuje se vliv 
základních veličin na modelovou nejistotu pro smykovou odolnost stanovenou podle EN 1992-1-1. 
Ukazuje se, že modelovou nejistotu lze popsat lognormálním rozdělením s variačním koeficientem 
0.15 a průměrnou hodnotou pohybující se mezi 0.9 a 1.05 pro nosníky s nízkým až vysokým stupněm 
podélného vyztužení. 
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 1 INTRODUCTION 
Previous studies [1-4] indicated that structural resistances can be predicted by appropriate 

modelling of material properties, geometry variables and uncertainties associated with an applied 
model. The effect of variability of materials and geometry is relatively well understood and has been 
extensively investigated. However, improvements in the description of model uncertainties are still 
needed [4]. 

For reinforced concrete structures flexural resistances are predicted with reasonable accuracy 
while accurate prediction of the shear resistances is difficult due to the uncertainties in the shear 
transfer mechanism, particularly after initiation of cracks [5]. The submitted study is therefore aimed 

                                                                                                                                                                   
1  Ing. Miroslav Sýkora, Ph.D., Department of Structural Reliability, Klokner Institute, CTU in Prague, 

Šolínova 7, 166 08 Prague 6, tel.: (+420) 224 353 850, e-mail: miroslav.sykora@klok.cvut.cz. 
2  Prof. Ing. Milan Holický, PhD., DrSc., Department of Structural Reliability, Klokner Institute, CTU in Prague, 

Šolínova 7, 166 08 Prague 6, tel.: (+420) 224 353 842, e-mail: milan.holicky@klok.cvut.cz. 



196 

at the model uncertainties of the shear resistance of beams without special shear reinforcement such 
as stirrups or inclined bars (hereafter referred to as “shear reinforcement” to simplify the text). 

Although members without shear reinforcement where shear failure is likely are not common 
in practice, adequate reliability needs to be assured since their failure is brittle and sudden. For 
members with shear reinforcement sudden failure is prevented by the reinforcement [6]. The shear 
behaviour of reinforced concrete members with shear reinforcement is considerably different from 
that without such reinforcement. However, even in the case of designing a member with shear 
reinforcement, it is essential to accurately assess the shear strength of a member without shear 
reinforcement. This is because shear design provisions usually require assessment of the shear 
capacity without shear reinforcement in order to check whether additional reinforcement is necessary 
or not [5]. 

EN 1992-1-1 [7] allows members without shear reinforcement to be used for slabs and 
members of minor importance such as lintels with a span length less than 2 m. The relationship for 
shear resistance of such members in the Code has been calibrated against extensive database of shear 
tests [8]. Background documents of the CEN/TC 250 Horizontal Group – Bridges indicate that EN 
1992-1-1 [7] requires shear reinforcement in some cases where it was not previously needed. 
Analysis of the EN resistance model for structural members without shear reinforcement thus seems 
to be desired. 

The present paper is an extension of a recent contribution [9]. In the paper probabilistic 
description of the model uncertainties is investigated. The model uncertainty factor is derived using 
the design value method to facilitate operational applications of the partial factor methods. 

 2 DEFINITIONS OF THE MODEL UNCERTAINTIES 
According to [10] the model uncertainty is generally a random variable accounting for effects 

neglected in the models and simplifications in the mathematical relations. The model uncertainties 
can be related to: 

• Resistance models (based on structural mechanics, constitutive laws), 
• Models for action effects (assessment of load effects and their combinations). 
This study is fully focused on the uncertainties related to resistance models of reinforced 

concrete structures. It is assumed that the uncertainty of actions can be treated separately. 
The uncertainty of a resistance model θ should cover the following aspects (if relevant): 
• Simplifications of known physical principles in an applied model (θS), 
• Approximations inherent to numerical methods and influence of different interpretations of 

complex software tools (θA). 
The uncertainty θS is related to the selection of a resistance model (e.g. application of the 

Finite Element Methods (FEM) compared with simplified engineering formulas) and possibly 
shortcomings of the whole profession (imprecision of the most suitable available model). In many 
cases this type of uncertainty can hardly be reduced. On the contrary the uncertainty θA is often 
reducible (or can be eliminated) using finer mesh in FE computations and particularly by quality 
control (independent checks, consultations with experts on modelling etc.). 

Commonly variability of material properties and possibly related statistical uncertainty are 
included in relevant models for material properties. In general the model uncertainty can be obtained 
from comparisons of physical tests and model results. A great care should be taken to define correctly 
test conditions and evaluate test results. It should be always assured that a specimen fails in an 
investigated failure mode. For instance when the model uncertainty in shear is investigated, beams 
failed in bending should be excluded from the assessment. Accuracy of tests (related to the test 
method and execution of an individual test) is commonly accounted for by a measurement error ε. 

Relationships among tests, models, related uncertainties θi and the measurement error ε are 
indicated in Fig. 1 with examples of influences to be considered. 
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f‘(Tests(X), ε(X)) → actual resistance ← f(Rmodel(X), θS(X), θA(X))

ε Measurement error
accuracy of test method
execution of individual test

Tests
Mathematical model

differential equations, boundary conditions,
analytical solutions

Numerical solution
FEM

Physics
Validation

Mathematics
Verification

θS Model simplifications

θA Numerical approximation, user choices
discretisation
type of finite elements

 
Fig. 1: Relationships among tests, models, related uncertainties and the measurement error 

In Fig. 1 terminology used in [11,12] is accepted and thus: 
• Validation denotes the process of determining if a mathematical model of a physical event 

represents the actual physical event with sufficient accuracy (“validation deals with 
physics”), 

• Verification is the process of determining if a computational model obtained by 
discretizing a mathematical model of a physical event and the code implementing the 
computational model can be used to represent the mathematical model of the event with 
sufficient accuracy (“verification deals with mathematics”). 

It is emphasised that the presented overview of factors affecting the model uncertainty is 
simplified; advanced general concept of the model uncertainty is provided in [13]. 

The present study is focused on the assessment of model uncertainties related to a simple 
model for shear resistance provided in EN 1992-1-1 [7] for which the model uncertainty θA is 
assumed to be irrelevant. Moreover, variability of the measurement error ε is assumed to be 
negligible. For convenience of the notation the model uncertainty due to model simplifications is 
hereafter referred to as θ. 

In the JCSS Probabilistic Model Code [10] the following definitions of the model uncertainty 
θ based on different relationships between the response of a structure (actual resistance) R and a 
model resistance Rmodel (estimate of the resistance based on a numerical model or analytical 
expression) are proposed: 
 R = θ Rmodel(X) (1) 

or 
 R = θ + Rmodel(X) (2) 

or a combination of both; XT = (X1,…, Xm) is the vector of basic variables Xi. In this paper the 
model uncertainty is assumed to be a random variable θ. However, in more advanced analyses it may 
be represented by functions of several auxiliary random variables θ and basic variables X involved in 
the model resistance [5]. 
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It is difficult to specify general conditions under which Eq. (1) or (2) becomes preferable since 
the choice always depends on task-specific conditions. Current practice indicates that the 
multiplicative definition in Eq. (1) is widely applied to the model uncertainties while the additive 
relationship in Eq. (2) is used to account for systematic measurement errors. 

From a purely statistical point of view the multiplicative relationship is more appropriate when 
the structural resistance R and the model resistance Rmodel(∙) are described by lognormal distributions 
since the model uncertainty θ is likewise lognormally distributed and its statistical characteristics can 
be readily derived. Similarly, the additive formula becomes preferable when normal distributions are 
relevant. It is worth noting that Eq. (1) can be transformed to Eq. (2) using the logarithmic 
transformation: 
 ln R = ln θ + ln[Rmodel(X1,…, Xm)] (3) 

The model uncertainty θ in general depends on basic variables X. Influence of individual 
variables on θ can be assessed by a regression analysis as described e.g. in [14]. It is also indicated 
that the model describes well the essential dependency between R and X only if the model 
uncertainty: 

• Has either a suitably small coefficient of variation (how small is the question of the 
practical importance of the accuracy of the model) or 

• Is statistically independent of the basic variables X. 
The model uncertainty should be always clearly associated with an assumed resistance model. 

It may also be important to define ranges of the input parameters X for which the accepted model 
uncertainty is valid. Such intervals should be established on the basis of: 

• admissible ranges of X for the model under investigation (for instance limits on 
reinforcement ratio) and 

• simplifications in modelling of θ (for instance when θ is considered independent of Xi, but 
only for some restricted interval of the basic variable). 

 3 UNCERTAINTIES RELATED TO THE MODEL PROVIDED IN EN 1992-1-1 
 3.1 Model in EN 1992-1-1 

In this section uncertainties related to the basic resistance model provided in EN 1992-1-1 [7] 
for beams without shear reinforcement are considered: 
 Rmodel(X) = max[0.18k(100ρlfc)1/3bwd; 0.035k3/2 fc

1/2 bwd] (4) 
where: 
k = min[1 + √(200 mm / d); 2.0] 

Notation of the basic variables is provided in Tab. 1. No axial compressive force is considered 
and neither the partial factor γC nor the characteristic value of fc is applied in Eq. (4). 

 3.2 Database of experimental results 
Researchers at the University of Stellenbosch collected a database of 184 tests of beams 

without shear reinforcement [15]. Overview of the experimental data is given in Tab. 1. The database 
covers a wide range of beams with low to medium concrete strengths; and small, ordinary and large 
effective depths. Lightly, moderately and heavily reinforced beams are included. The shear span-to-
depth ratio a/d exceeds 2.9 for all the beams to exclude deep beam and shear bond failures [16]. 

It is worth noting that the database contains: 
• three specimens with the longitudinal reinforcement of yield strength fy = 999 MPa and 
• five specimens with the longitudinal reinforcement of fy = 1780 MPa. 
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Tab. 1: Scatter of variables included in the database and parameters describing their influence on θ 
Variable Min. Max. ρ R2 
bw (mm) – smallest width of a cross-section in the tensile area 100 1000 -0.30 0.09 
h (mm) – height 125 1250 -0.29 0.08 
d (mm) – effective depth 110 1200 -0.30 0.09 
a/d – shear span-to-depth ratio 2.95 8.03 -0.23 0.05 
agg (mm) – aggregate size 6.4 38 -0.22 0.05 
fc (MPa) – concrete compressive strength 14.7 45.7 0.23 0.05 
Asl (mm2) – area of the tensile reinforcement 199 7000 -0.12 0.01 
ρ1 = 100 × Asl / (bwd) ≤ 2 (%) – longitudinal reinforcement ratio 0.42 4.73 0.45 0.20 
fy (MPa) – yield strength 276 1780* -0.26 0.07 
Vu (kN) – shear force at failure 19.5 392 - - 
ρl fy (MPa) 2.24 16.62 0.43 0.18 

* 800 MPa after exclusion of specimens with high fy (see below) 

Histogram of yield strengths in the whole database is shown in Fig. 2. Annex C of 
EN 1992-1-1 [7] states that the design rules of Eurocode are valid when reinforcing steel of the 
characteristic yield strength fyk between 400 to 600 MPa is used. Therefore, particularly values of fy 
mentioned above seem to be high and the eight specimens are excluded from the database. Since the 
yield strength is not included in Eq. (4), the other specimens for which fy is less significantly beyond 
the limits remain included in the database for a statistical evaluation of the model uncertainty. 
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Fig. 2: Histogram of fy for the whole database 

 3.3 Statistical evaluation of the model uncertainty 
For each experiment the model resistance is assessed from Eq. (4) and the model uncertainty 

from Eq. (1). Note that the first term in Eq. (4) is decisive for all the specimens. Obtained sample 
statistical characteristics of θ for the whole database (mean m, coefficient of variation v, skewness w) 
are given in Tab. 2. 



200 

Tab. 2: Sample characteristics of the model uncertainty 
Description of the sample m v w 
Whole database, n = 176 
Whole database without the outliers, n = 174 

1.00 
1.00 

0.14 
0.13 

0.72 
0.15 

Lightly reinforced beams (0.14 ≤ ρl ≤ 1 %), n = 27 0.89 0.13 0.60 
Moderately reinforced beams (1 < ρl ≤ 2 %), n = 63 0.98 0.12 -0.15 
Heavily reinforced beams (2 < ρl ≤ 4.73 %), n = 86 
Heavily reinforced beams without the outliers, n = 84 

1.05 
1.04 

0.13 
0.11 

1.21 
0.45 

The ratio of skewness and coefficient of variation indicates that a two-parameter lognormal 
distribution (having the skewness w = 3v + v3) is an appropriate probabilistic model for θ which is in 
agreement with common assumptions [10]. 

Previous study [6] reported influence of d and ρl on the model uncertainty. A simple 
sensitivity analysis as proposed in [15] is conducted for the present database. Trends in θ with a basic 
variable are assessed using: 

• The correlation coefficient ρ (correlation between θ and Xi), and 
• The coefficient of determination R2, a measure of the linear relationship between θ and 

Xi [17]. 
Results are provided in Tab. 1. A combination of strong ρ (say, |ρ| > 0.5) and strong R2 (say, 

R2 > 0.5) indicates a significant linear relationship between θ and X whereas strong correlation with 
relatively weak R2 suggests a non-linear relationship. The results in Tab. 1 reveal weak to moderately 
weak correlations of all the shear parameters with θ ; the most influential parameter is ρl (ρ = 0.45; 
R2 = 0.20). 

A multiple linear regression with all the shear parameters yields R2 = 0.49 and somewhat 
improves the model of θ. However, the model uncertainty as a function of 10 variables is impractical. 
Therefore, the influence of the longitudinal reinforcement ratio on θ is considered hereafter only. 
Fig. 3 shows the histogram of ρl for the whole database; limits for lightly, moderately and heavily 
reinforced beams are accepted from [5]. It appears that the database contains a sufficient number of 
the test results for each amount of reinforcement. Sample sizes are n = 27, 63 and 86 for lightly, 
moderately and heavily reinforced beams, respectively. 

Fig. 4 shows variation of the model uncertainty with ρl. The model uncertainty clearly 
increases with an increasing reinforcement ratio and its differentiation with respect to ρl is thus 
proposed. Sample characteristics of θ for the different levels of reinforcement are provided in Tab. 2. 
It follows that the mean depends on ρl while the coefficient of variation can be considered 
independent of ρl. The skewness for the three data groups significantly differs. 

Statistical testing of outliers is conducted to exclude measurements obtained under 
significantly different conditions or affected by errors. For each data group Grubb’s test at a 
significance level of 0.05 [17] is performed. Two outliers are identified and excluded from the data 
for the heavily reinforced beams (see Fig. 4). Sample characteristics of the model uncertainty derived 
from the whole database and from data available for heavily reinforced beams without the outliers are 
provided in Tab 2. The exclusion of the outliers leads to a remarkable reduction of the sample 
skewness while the means and coefficients of variation are affected insignificantly. 

Note that the characteristics of the model uncertainty can be alternatively assessed using the 
procedure for statistical determination of resistance models given in Annex D of EN 1990 [18]. It is 
foreseen that application of this procedure would yield similar results as obtained in this study. 
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Fig. 3: Histogram of ρl for the whole database Fig. 4: Variation of θ with ρl for the whole database 

 4 MODEL UNCERTAINTY FACTOR FOR DETERMINISTIC RELIABILITY 
VERIFICATIONS 
For deterministic reliability verifications EN 1990 [18] introduces the partial factor γRd to 

describe the uncertainty associated with the resistance model (“design value of the model 
uncertainty”). Fig. 5 illustrates the relationship between the probabilistic distribution of θ and factor 
γRd. As an example the lognormal distribution (mean μθ = 1 and coefficient of variation Vθ = 0.15) 
and the relevant model uncertainty factor γRd = 1.20 obtained from Eq. (6) (see text below) are shown. 

The model uncertainty factor γRd for reinforced concrete structures can be obtained as a 
product of [19]: 
 γRd = γRd1 γRd2 (5) 
where: 
γRd1 - denotes the partial factor accounting for model uncertainty, 
γRd2 - partial factor accounting for geometrical uncertainties. 

EN 1992-1-1 [7] provides no specific recommendations concerning model uncertainties. 
EN 1992-2 [20] introduces the global safety format for a nonlinear analysis with the recommended 
model uncertainty factor of 1.06. However, it has been shown [4] that such a factor is rather low and 
should be increased in most cases depending on relevant failure mode (bending, shear, compression). 

γRd1 = 1.05 for concrete strength and γRd1 = 1.025 for reinforcement may be assumed in 
common cases [19]. However, larger model uncertainty needs to be considered for punching shear in 
the case when concrete crushing is governing. A value of γRd2 = 1.05 may be assumed for geometrical 
uncertainties of the concrete section size or reinforcement position. When relevant measurements of 
an existing structure indicate insignificant variability of geometrical properties, γRd2 = 1.0 may be 
considered. 
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 Fig. 5: PDF of θ and γRd   Fig. 6: Variation of γRd with β for αR = 0.32 

Alternatively, the partial factor γRd can be obtained from the following relationship based on a 
lognormal distribution: 
 γRd = 1 / [μθ exp(-αRβ Vθ)] (6) 
where: 
αR - denotes the FORM sensitivity factor 
β - target reliability index according to EN 1990 [18]. 

Fig. 5 illustrates relationship between probability density function (PDF) of θ and the model 
uncertainty factor γRd. 

Considering the statistical characteristics of the model uncertainty given in Tab. 2, variation of 
the partial factor γRd obtained from Eq. (6) with the target reliability β for αR = 0.4 × 0.8 = 0.32 
(“non-dominant resistance variable”) is indicated in Fig. 6. 

It follows from Fig. 6 that the model uncertainty factor γRd increases with an increasing target 
reliability index β. For the considered range of β from 3.2 to 4.4 the model uncertainty varies 
approximately within the following intervals: 

• 1.30-1.35 for lightly reinforced members (γRd ≈ 1.3 may be commonly accepted), 
• 1.15-1.20 for moderately reinforced members (γRd ≈ 1.2 as a first approximation), 
• 1.10-1.15 for heavily reinforced members (γRd ≈ 1.1 as a first approximation). 
However, this differentiation will somewhat complicate applications of the partial factor 

method and its implementation into codes of practice needs to be carefully considered. 
The selection of αR = 0.32 deserves additional comments. Leading and accompanying actions 

(with associated factors αE = -0.7 and αE = -0.4 × 0.7 = -0.28, respectively) are distinguished in 
Annex C of EN 1990 [18] while αR = 0.8 is recommended for resistance variables under conditions 
specified in the Eurocode. When the model uncertainty factor γRd and material factor γm are assessed 
separately considering αR = 0.8, overly conservative designs may be obtained. Therefore, CEB 
bulletin [21] and also present working materials of fib assume that the model uncertainty is not a 
leading resistance variable and the sensitivity factor is thus reduced to αR = 0.4 × 0.8 = 0.32. 
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 5 CONCLUDING REMARKS 
Description of model uncertainties is a crucial problem in reliability verifications of reinforced 

concrete structures. The present study is focused on the model uncertainties in shear resistance of 
beams without shear reinforcement; the following concluding remarks are drawn: 

• The model uncertainty should be always clearly associated with an assumed resistance 
model and related to specified ranges of basic variables. 

• Longitudinal reinforcement ratio influences the mean of the model uncertainty and its 
differentiation for lightly, moderately and heavily reinforced beams is advisable. 

• Uncertainties related to the section-oriented model provided in EN 1992-1-1 can be 
described by the lognormal distribution with a coefficient of variation of about 0.15 and 
the mean values of 0.9, 1.0 and 1.05 for beams with light, moderate and heavy longitudinal 
reinforcement, respectively. 

• For reliability verifications based on the partial factor methods the model uncertainty 
factors of 1.3, 1.2 and 1.1 can be accepted for beams with light, moderate and heavy 
longitudinal reinforcement, respectively. 
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