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Abstract 

Assessment of existing structures should be based on the knowledge about as-built conditions 
including uncertainties concerning geometry, material properties, loading and environmental 
conditions. A crucial step of the assessment may be the evaluation of prior information and newly 
obtained measurements for which Bayesian approach provides a consistent framework. Updating of 
probabilistic distributions of basic variables, direct updating of failure probability and combination 
thereof can be applied. 
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Abstrakt 

Při hodnocení existujících konstrukcí je potřebné uvážit nejistoty související s geometrickými 
a materiálovými vlastnostmi, zatíženími a vlivy okolního prostředí. Důležitým krokem hodnocení 
může být využití apriorních znalostí společně s nově získanými informacemi o konstrukci. 
Bayesovské postupy umožňují aktualizovat pravděpodobnostní rozdělení základních veličin nebo 
přímo pravděpodobnost poruchy. 
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 1 INTRODUCTION 
Reliability verifications of existing structures cover all aspects of assessing the condition of 

the structures by inspections, testing, monitoring, and calculations. The most important difference 
between the assessment of existing structures and the design of a new structure is in the amount of 
information available about the structure [1]. 

As a rule, vague prior information, often available in the assessment of existing structures, 
needs to be supplemented by experimental data and/or by other additional information such as a 
qualitative assessment on the basis of inspection. In accordance with ISO 13822 for the assessment of 
existing structures [2] probabilistic updating based on Bayesian methods provide a rational and 
consistent basis for the inclusion of the new information. 
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The present paper is an updated version of a recent contribution [3]. It attempts to clarify the 
use of the probabilistic updating in the assessment of existing structures. An application of theoretical 
procedures is illustrated in the example of practical relevance. 

 2 PRINCIPLES OF UPDATING 
When assessing existing structures various types of information may be available. Examples 

of such information are: 
• Survival of a significant overloading, 
• Material characteristics from different sources, 
• Known geometry, damage and deterioration, 
• Outcome of visual inspections, 
• Capacity by proof loading, 
• Static and dynamic response to controlled loading. 
In the assessment of existing structures new information can be taken into account and 

combined with the prior probabilistic models by updating techniques. This results in the so-called 
posterior probabilistic models, which may be used for an enhanced assessment of the structure. Prior 
information is commonly based on experience from assessments of similar structures, long-term 
material production, findings reported in literature or engineering judgement. 

When discussing updating techniques for structural reliability two types of quantitative 
information should be distinguished: 

• Information of the equality type, 
• Information of the inequality type. 
The information of the equality type represents measured values of some basic or response 

variables. For example the crack width 3.2 mm has been measured at the stress equal to 200 MPa. 
Obviously, such measurements are seldom perfect and may suffer from some kind of errors. In a 
probabilistic evaluation procedure, measurement errors should be modelled as random variables, 
having means (zero for unbiased estimates), standard deviations and, if necessary some correlation 
pattern. The standard deviation is a property of the measurement technique, but may also depend on 
the actual conditions. An important but difficult part of the modelling is the degree of correlation 
between observations at different places and different points in time. 

The information on the inequality type refers to observations when the observed variable is 
identified to be greater or less than a given limit. For example, a crack may be less than the 
observation threshold, a limit state is reached or not. Uncertainty in the threshold value should be 
taken into account. The distribution function for the minimum threshold level is often referred to as 
the Probability of Detection curve (POD curve). Also here, correlations for the probability of 
detection in various observations should be known. 

Furthermore ISO 13822 [2] distinguishes between two fundamental types of the probabilistic 
updating (both types are discussed in the following sections): 

• Updating of the (multivariate) probability distribution of basic variables, 
• Direct updating of the structural failure probability. 
A common approach is to update firstly distributions of basic variables (Section 3) and then to 

analyse reliability considering updated distributions and additional information (Section 4). 
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Fig. 1: Illustration of updating of probabilistic models 

 3 UPDATING OF THE PROBABILITY DISTRIBUTION OF A BASIC 
VARIABLE 

 3.1 Basis of Bayesian updating 
Updating of the probability distribution of a basic variable is commonly based on Bayesian 

methods described briefly below. Two events A and B are further considered. The conditional 
probability P(A|B) of the event A given the event B has occurred with a non-zero probability P(B) is 
defined as: 
 P(A|B) = P(A ∩ B) / P(B) (1) 

Considering the set of mutually exclusive events Bj, Bayes’ rule is given as: 
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where: 
P(Bi|A) – is often referred to as the posterior probability of Bi, 
P(A|Bi) – likelihood, 
P(Bi) – prior probability of the event Bi. 

Fig. 1 shows corresponding prior and posterior probability density functions together with 
likelihood functions. In the first case the prior information is strong and the likelihood is weak (small 
sample size). In the second case the prior information is weak and the likelihood is strong. Finally in 
the last case the prior information and the likelihood are of comparable strength. It is seen from Fig. 1 
that the modelling of both the prior probabilistic models and the likelihood is of utmost importance. 

In the updating, characteristics Θ of a random variable X (e.g. mean, standard deviation, 
skewness, lower bound etc.) are considered as random variables. Prior distributions of these 
characteristics are then updated using n test results x1, x2,…, xn. The variable has the prior probability 
density function f‘(x|Θ) dependent on the random parameters Θ and Π‘(Θ) is the prior joint 
probability density function of the parameters Θ. Note that the symbol ‘ denotes the prior 
characteristics, symbol “ the posterior characteristics and test results are indicated without the 
quotation marks. Relationship (2) can be recast as: 
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where: 
Π“(·) – is the posterior joint probability density function of Θ updated considering the test results, 
C – normalizing constant. 

Posterior probability density function of the random variable is obtained by integration: 

 ( ) ( ) ( ) Π=
Θ
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In [4,5] a number of closed form solutions of Equations (3) and (4) can be found for special 
types of probability distribution functions known as the natural conjugate distributions. These 
solutions are useful in updating of random variables and cover a number of distribution types 
important for reliability-based structural assessments. When no analytical solution is available 
FORM/SORM techniques can be used to assess the posterior distribution [6]. 

In civil engineering practice Bayesian updating is often directly based on relationships (1) 
to (4) [2]. Supplementary information can be found elsewhere [4,5,7]. Documents [7,8] assume an 
extension of relationship (2) described in the following. 

 3.2 Procedure in accordance with ISO 12491 
The procedure accepted here is limited to a normal variable X for which the prior joint 

probability density function Π’(μ,σ) of μ and σ is given as: 
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where: 
δ(n') = 0 for n' = 0 and δ(n') = 1 otherwise. 

The prior parameters m’, s’, n’, ν’ are parameters asymptotically given as: 

 E(μ) = m’, E(σ) = s’, V(μ) =
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s
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The parameters n’ and ν’ are independent and may be chosen arbitrarily (it does not hold that 
ν’ = n’ – 1). In Equations (6) E(.) denotes the expectation and V(.) the coefficient of variation. 
Equations (6) can be used to estimate unknown parameters n’ and ν’ provided the values V(μ) and 
V(σ) are estimated using experimental data or available experience. 

The posterior distribution function Π"(μ,σ) of μ and σ is of the same type as the prior 
distribution function, but with parameters m’’, n’’, s’’ and ν’’, given as: 
 n’’ = n’ + n; ν’’ = ν’ +ν + δ(n’)  
 m’’n’’= n’m’ + nm; ν’’(s’’)2 + n’’(m’’)2 = ν’(s’)2 + n’(m’)2 + νs2 + nm2 (7) 
where: 
m – is the sample mean, 
s – sample standard deviation, 
n – size of the sample, 
ν = n – 1 number of degrees of freedom. 
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If no prior information is available, then n’ = ν’ = 0 and the characteristics m’’, n’’, s’’, ν’’ 
equal the sample characteristics m, n, s, ν.  

 4 DIRECT UPDATING OF THE STRUCTURAL FAILURE PROBABILITY 
The failure probability, related to the period from the assessment to the end of a working life 

tD, can be obtained from a general probabilistic relationship: 
 pf(tD) = P{min Z[X(τ)] < 0 : 0 < τ < tD} = P{F(tD)} (8) 
where: 
Z(∙) – denotes the limit state function(s), 
X(∙) – vector of basic variables including model uncertainties, resistance, permanent and variable 

actions, 
F(tD) – failure in the interval (0,tD). 

When additional new information I related to structural conditions is available, the failure 
probability may be updated according to ISO 13822 [2] as follows: 
 pf

”(tD|I) = P{F(tD) ∩ I} / P(I) (9) 
If the information is of an inequality type (e.g. Z(∙) ≥ 0 when no damage or failure has been 

observed after some loading) standard methods for a system reliability analysis can be used to 
evaluate the probability P{F(tD) ∩ I} [9]. The procedure proposed in [10] can be applied in the case 
of the information of an equality type. 

The information should be selected to maximise correlation between the events {F} and {I}. 
Strong correlation improves the posterior estimate of failure probability while a weak correlation 
yields nearly the same estimates as based on Equation (8) [11]. With reference to Section 2 examples 
of such information are survival of a significant overloading, capacity by proof loading and static and 
dynamic response to controlled loading. 

In the case of survived overloading the satisfactory past performance of a structure during a 
period tA till the time of assessment may be included in the reliability analysis considering the 
conditional failure probability pf

”(tD|tA). This is a probability that the structure will fail during tD 
given that it has survived the period tA. This probability can be estimated in several ways. 

When the load to which the structure has been subjected during tA is known with negligible 
uncertainties, the resistance or a joint distribution of time-invariant variables may be truncated (a 
lower bound is set to the value of load). Using the bounded distribution, the conditional (updated, 
posterior) probability pf

”(tD|tA) can be estimated. This approach, similar to the updating for proof load 
testing [4], is illustrated elsewhere [12]. More generally, the updated failure probability can be 
determined using the following relationship: 
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where: 
F  – denotes a complementary event to the failure. 

The updated probability can be determined by standard techniques for reliability analysis 
(FORM/SORM, importance sampling) as shown in a numerical example. 

Finally it should be mentioned that individual random variables may also be updated by 
inspections of events involving the outcomes of several random variables. This should nevertheless 
be done with a care. It is important to recognise that all the random variables may contribute to a 
result of the inspection. For instance when a crack length in a selected cross-section of the structure is 
measured, this result is influenced by loads, material and geometrical properties. Consequently all 
these variables become correlated through the result of the measurement even if they have been 
independent before the inspection. 
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 5 NUMERICAL EXAMPLE 
Selected techniques of the updating are applied in the example of reliability assessment of a 

structural member of the building constructed in 1960s as a part of a textile mill. The building is to be 
used as an office building. An anticipated working life is tD = 50 years. The reliability assessment is 
focused on a simply supported steel beam exposed to bending moment due to permanent and imposed 
loads. Axial and shear forces need not to be taken into account, the beam is laterally restrained. For 
the sake of clarity the reliability assessment is considerably simplified to illustrate general steps of the 
probabilistic verification rather than to describe specific details. 

Initially reliability of the member is verified by the partial factor method. Characteristics of 
the resistance and permanent action are specified considering results of on-site surveys and original 
design documentation. During the previous use of the structure, degradation has resulted in a minor 
loss of the steel section. In the assessment the actual steel section characteristics are considered and 
no further degradation is expected during the remaining working life. Characteristic value of the 
imposed load is determined in accordance with EN 1991-1-1 [13]. 

Using the load combination rule (6.10) given in EN 1990 [14] and yield strength obtained 
from tests (see below), the deterministic verification reveals that reliability of the member is 
insufficient as the actual resistance is approximately by 40 % lower than required by Eurocodes. 

 5.1 Updating of the yield strength of steel 
Six specimens have been taken from unloaded structural members to verify the yield strength 

of structural steel. The tests provided the following results in MPa; xT = {290.7; 287.5; 298.8; 302.3; 
294.6; 297.2}. The measurement error is assumed negligible. 

Using the method of moments [5] the point estimates of the sample characteristics are: 
m = Σi xi / n = 295.2 MPa, s = √[Σi (xi – m)2 / (n – 1)] = 5.43 MPa, and V = s / m = 0.0184 (11) 
where: 
n = 6 – sample size (i = 1…6). 

The sample coefficient of variation is unrealistically low. This is attributed to the fact that the 
tested steel likely originates from a single production batch and batch-to-batch variability of yield 
strength is not captured in the sample. Considering that and also due to the small sample size, 
statistical characteristics obtained from the sample are deemed not to be representative for the steel of 
the whole structure. That is why the test results are combined with available prior information to 
obtain more realistic model of the yield strength. 

Extensive statistical evaluation of properties of structural steels [15] indicated that the yield 
strength of steel produced in 1960s can be described by a two-parameter lognormal distribution, with 
the mean m’ = 299 MPa, standard deviation s’ = 28.3 MPa and coefficient of variation V’ = 0.094. 

It is, however, emphasised that prior information should be applied with an uttermost caution. 
Materials produced by various manufacturers may have considerably different mechanical 
characteristics. When suitability of the prior information for an assessed material is doubtful it is 
advised to obtain more data by destructive or well validated non-destructive tests. 

An auxiliary variable Y = ln|X| is further introduced (X denotes the yield strength here). The 
variable Y is normally distributed with the mean and standard deviation: 
 prior information: my‘ = ln(m‘) – 0.5 ln[1 + (V‘)2] = 5.69; sy‘ = √{ln[1 + (V‘)2]} = 0.0945 
 tests: my = 5.69; sy = 0.0184 (12) 

Prior information on structural steel may be relatively strong and the corresponding 
hypothetical sample size is n‘ ≈ 50 [7]. For concrete compressive strength ISO 2394 [16] indicates a 
prior number of degrees of freedom for the prior standard deviation ν’ = 5 while JCSS Probabilistic 
Model Code [7] suggests ν’ = 10. Conservatively ν’ = 5 is accepted in this study for structural steel. 
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Fig. 2: Prior and posterior probability density functions with the likelihood 

The characteristics of Y are assumed to have the prior distribution function in accordance with 
Equation (5). The posterior distribution function Π”(∙) has the updated parameters m”, s”, n” and ν” 
given in Equation (7): 
 n” = n + n’ = 56; ν” = ν + ν’ + δ(n’) = 10; my” = (my n + my’n’) / n” = 5.69; 
 sy” 2 = (ν sy

 2 + ν’ sy’ 2 + n my
 2 + n’ my’ 2 - n” my” 2) / ν” = 0.0042 (13) 

The updated characteristics of the yield strength are obtained as follows: 
 V’’ = √[exp(sy’’2) – 1] = 0.065; m’’ = exp[my’’ + 0.5 ln(1 + V’’2)] = 297.6 MPa (14) 

The prior and posterior probability density functions with the likelihood are plotted in Fig. 2. 
It follows that the posterior distribution has a lower variance than the prior distribution. 

The characteristic value can be obtained in accordance with EN 1990 [14]: 
 xk = exp[my“ + qt(0.05,ν“)√(1 + 1/n“) sy“] ≈ 264 MPa (15) 
where: 
qt - denotes the p-fractile of t-distribution for a given number of degrees of freedom. 

 5.2 Probabilistic reliability analysis 
Probabilistic reliability analysis is based on the limit state function Z(∙) for the member 

exposed to bending (notation and probabilistic models of the basic variables X given in Tab. 1): 
 Z(X,tD) = KRR – KE [G + QtD] (16) 

The probabilistic models are based on recommendations of JCSS Probabilistic Model 
Code [7] and additional findings published elsewhere [17]. For convenience all the basic variables in 
Tab. 1 are normalised by L2 / 8 (L is a span of the member). 

It is noted that the accepted mean value of the model uncertainty for a flexural resistance μKR = 
1.0 differs from the mean value reported in [18] where μKR ≈ 1.15 is obtained by the statistical 
evaluation of test results. For assumptions made in the design of new structures, actual resistance is 
positively influenced by tolerance specifications in dimensions of a rolled sections and the mean of 
the model uncertainty increases. However, the assessment of the existing beam is based on actual 
dimensions and this positive effect vanishes. 

Using the FORM method, the reliability verification is firstly based on Equation (8) (updated 
resistance model only). The reliability index β ≈ 1.3 is too low compared to the target reliability level 
βt = 3.1 indicated in ISO 2394 [16] for moderate consequences of failure and moderate costs of safety 
measures. 
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Tab. 1: Models for basic variables 
Variable Sym. Unit Distribution xk μX / xk VX 
Flexural resistance (updated) R kN/m Lognormal 4.32 1.13 0.065 
Permanent load effect G kN/m Normal 2.0 1 0.05 
Imposed load effect (50-y. maxima) QtD kN/m Gumbel 3.0 0.6 0.35 
Effect of the survived load S kN/m Normal 3.3 1 0.05 
Resistance uncertainty KR - Lognormal 1 1 0.05 
Load effect uncertainty KE - Lognormal 1 1 0.1 

xk = characteristic value; μX = mean; VX = coefficient of variation. 

Secondly, the reliability is updated considering the satisfactory past performance to improve 
this estimate. It is known from previous performance of the structure that the member has survived 
the load S equal to 1.1-times the characteristic value of the imposed load. Uncertainties in the 
survived load effect are described by the normal distribution with the mean equal to the observed 
value and coefficient of variation 0.05. Given the survival of the load S, the updated reliability index 
β”(tD|S) ≈ 2.7 follows from the conditional failure probability based on Equation (9): 
 pf

”(tD|S) = P{[KRR - KE(G + QtD) < 0] ∩ [KRR - KE(G + S) > 0]} / P{KRR - KE(G + S) > 0} (17) 
Note that the present conditions of the beam are assumed to be the same as those at the time of 

exposure to the load S. It is emphasised that information on previous loads should be always 
considered carefully and related to relevant uncertainty. 

The predicted reliability, β”(tD|S) ≈ 2.7, is still rather low. In general five options can now be 
considered: 
1. To improve information on variables significantly affecting structural reliability by inspections 

or tests. 
2. To upgrade the member, 
3. To propose an adequate limit on the imposed action, 
4. To accept a shorter remaining working (such as 10 years) and after that re-assess the beam, 
5. To derive optimum target reliability following the principles provided by ISO 2394 [16]. 

Note that the third option may be applicable for industrial structures rather than office 
buildings. Frequently limits on vehicle weight are applied on road bridges. When the fourth option is 
accepted the updated reliability index β”(10 y.|S) ≈ 3.15 is obtained from Equation (17) using 10-year 
maxima of the imposed load. The fifth option is thoroughly discussed in [19,20] where optimisation 
of the total costs related to a structure including potential failure consequences and human safety 
criteria are considered. 

 5.3 Parametric study 
To generalise findings of the probabilistic analysis, a parametric study is conducted for the 

load ratio given as the fraction of the characteristic variable action over the total characteristic load: 
 χ = Qk / (Gk + Qk) (18) 

The load ratio χ may vary within the interval from nearly 0 (underground structures, 
foundations) up to nearly 1 (local effects on bridges, crane girders). For steel members in buildings 
the load ratio is expected within the range from 0.4 up to 0.8. 

For a given load ratio and characteristic imposed load, the characteristic permanent load is 
obtained from Equation (18). Characteristic resistance is then derived from the load combination rule 
(6.10) and multiplied by the coefficient ξ which represents the ratio between the actual characteristic 
resistance of an existing structural member and characteristic resistance according to the Eurocodes. 
To be consistent with the previous analysis ξ = 0.6 is considered (i.e. actual resistance is by 40 % less 
than that required by Eurocodes). 
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Fig. 4: Variation of β with ξ for χ = 0.6 

Variation of the reliability index with the load ratio is shown in Fig. 3 for ξ = 0.6. Fig. 3 
demonstrates that effect of the updating increases with a decreasing load ratio when variable actions 
(not updated variables) become less significant. Variation of the reliability index with the ratio ξ is 
shown in Fig. 4 for χ = 0.6 (the middle value of the expected range). It appears that the updating 
improves reliability estimates only for low ratios ξ (i.e. for low reliability levels, say β < 2.0). 
Moreover, it has been shown that the updating with respect to a survived load is less efficient when 
the intensity of this load decreases below the characteristic variable load [21]. 

 6 CONCLUDING REMARKS 
Reliability verifications of existing structures should be backed up by inspection including 

collection of appropriate data. Assessments based on simplified conservative procedures used for 
structural design may lead to expensive repairs and waste of resources. 

Probabilistic methods can thus be applied to better describe uncertainties and take into account 
results of inspections and tests as well as satisfactory past performance by an updating. Two 
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fundamental types of the probabilistic updating include updating of probability distributions of basic 
variables and direct updating of the structural failure probability. 

Numerical example reveals that: 
• It may be misleading to develop a model for material property from a limited number of 

tests and consideration of prior information is advisable. On the contrary the prior 
information should be used cautiously since erroneous results may be obtained when the 
prior information is obtained from non-homogeneous sample having different material 
properties. 

• The effect of the updating considering a survived load increases when variable actions 
become less significant. The updating then improves reliability estimates particularly for 
low reliability levels (β < 2.0). 
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