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Abstract 

A new interface delamination model of a layered structure is discussed. The concept of the 
solution is developed by the mathematical model of interface contact damage. The proposed 
numerical solution considers the rate independent evolution at small strain and the concept of the 
energetic solution. Applied energetic formulation governs the debonding process by means of two 
interface variables. Presented numerical example demonstrates its theoretical applicability of the 
whole solution approach in the engineering practise. 
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 1 INTRODUCTION 
Recently, the analysis of crack propagation process has considerably influenced design and 

development of engineering constructions and materials. Therefore, considering the numerical 
approaches and developing of the mathematical models for solving the fracture problems enable its 
efficient applicability in engineering practice. The general objective of this study is the mutual 
comparison of the adhesive and cohesive contact model behaviour at the delamination process. Thus, 
the main motivation was to develop a useful numerical tool based on energetic principle and 
variational formulations. The interface as a zone of interest of this study is commonly represented by 
a thin layer which can be partially or fully damaged. Such a process is frequently referred to as 
delamination [2]. The aforementioned failure mechanism is given by the crack initiation and 
propagation which occurs in an interface and depends on the applied load. The process of quasistatic 
evolution is motivated by Griffith criterion, see Section 4.1 [1], [5].  

 In this study, the numerical approach for investigation of the interface failure mechanism 
based on microscopic analysis and plasticity is discussed, see [8],[14]. The presented model of 
interface damage determines two active interface variables which conveniently describe a plasticity 
of the interface and its failure. First, a damage parameter ζ defines the level of rupture of the 
interface due to delamination. Second, a plastic slip π describes a plastic deformation that may appear 
in the interface tangent direction before the rupture of adjacent bulks as it is discussed in [4], [7], 
[10]. The presented contribution discusses the effect of crack propagation by means of comparison of 
analysed models with either type of contact, respectively in the sliding crack mode (Mode II).  
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The comprehensive mathematical solution was acquired by assuming the variational methods 
which suppose the equilibrium between energy stored in structure and energy which is dissipated 
from the system in consequence of delamination process [13], [15], [16]. The essential idea of this 
study is based on the hypothesis that the failure mechanism is governed by a time dependent Gibbs’s 
stored energy functional ES (involving the external loading) and dissipation potential R, which 
reflects the rate-independence of the process. Both of mentioned functionals are defined on suitable 
state space. We consider that R involves only ζ and π components of a state q = (u, ζ, π). Where u 
represents the displacement field, ζ expresses the internal variable of the damage process and π  
describes the influence of plastic slip, see [5], [15]. The frequent effect of numerical algorithms is the 
non-convex character of the total energy functional [5], [13], [15], [16]. Additionally, the functional 
has to be considered with constraints given by the character of the aforementioned variables π and ζ. 
Therefore, applying the special numerical treatment (alternative minimization algorithm), the 
expected quadratic character of the energy functional was obtained and it refers to minimum 
dissipation-potential principle. The obtained solution exploits the advantageous properties of 
conjugate gradient algorithms for minimizing procedure of non-convex total energy functional H [6]. 
The suggested approach has been applied and tested in MATLAB [11], see Section 6. 

 2 A CONCEPTUAL MODEL OF INTERFACE DAMAGE AND PLASTICITY 
An essential concept of investigated layered structure has been defined by a planar domain 
2R⊂Ω with a bounded Lipschitz boundary Γ=Ω∂ . Considering its decomposition, we acquire two 

non-overlapping subdomains AΩ  and BΩ  with respective boundaries AΓ and BΓ , for 
simplification can be expressed in the form BA,=Γ ηη , see Fig. 1 [2], [3]. 

 
Fig. 1: Layered structure model for interface failure. 

Consequently, let us denote the common part of subdomain boundaries ηΓ as an interface CΓ  
hence BA

C Ω∂Ω∂=Γ   which is usually represented by continuous spring distribution with 
tangential and normal elastic stiffnesses tk  and nk [3]. The interface CΓ  represents a prescribed 
curve, which is the analysed area. On the smooth part of Γ , we can define the outward normal and 
tangential vectors ηn and ηt [2]. On η

uΓ we imposed time-dependent boundary displacements 

( )τηw , while the remaining parts η
tΓ are assumed to be traction free 0=ηt . On the Dirichlet part 

of the boundary uΓ  we apply a time-dependent boundary displacement ( )τηu  therefore, any 

admissible displacements ηu  are equal to a prescribed hard-device ( )τηu  on η
uΓ and they represent 

the boundary conditions [2], [5]. It is considered that the crack can be initiated and propagated along 
the interface CΓ , this delamination process is assumed as rate-independent evolution, i.e. no inertial 
time scale is considered. Due to the delamination process, the material of the bonding layer is 
damaged and the interface is ruptured. 
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This failure mechanism is modelled by two interface parameters: 
• The scalar damage variable [ ]0,1: →ΓCζ   

This parameter has the meaning of the level of rupture interface: ( ) 0=xζ  has a meaning of a 
complete delamination at particular point and ( ) 1=xζ  corresponding to undamaged interface means 
100 % perfect bonding [5].  

• The tangential plastic slip variable π  : 
Considered at the interface and allows for a difference between crack opening and sliding modes in 
view of experimental observations of interface crack growth. The investigations confirm 
experimental observations that the energy dissipated from the system in sliding crack mode is 
significantly greater than in the opening mode. And moreover, corresponding plastic deformations of 
the structure are larger in sliding mode than in opening mode, see [8], [14]. 

 3 ANALYSIS OF INTERFACE CONTACT MODEL  
The study discusses a mathematical modelling of crack propagation along the interface in 

order to compare the failure process for adhesive and cohesive contacts, respectively. Both contacts 
were modelled numerically and consequently analysed and tested in MATLAB. 

 

 

Fig. 2: Depiction of interface damage with cohesive and adhesive contact at the same loadstep τλ . 

 

 3.1 Adhesive-type contact interface model  
The adhesive-type contact, see Fig. 3, yields a basic scenario which provides a discontinuous 

response of the damage parameter ζ  and the mechanical stress σ  in the form: 

 ,ukζσ =  (1) 

with the stiffness parameter k and displacement u. The process starts from unstressed state. Applying 

the load, the stress linearly increases with u until the crack driving force 2

2
1 ukd =σ  reaches the 

activation threshold Gd. Consequently the damage parameter ζ and also the mechanical stress σ 
change its values abruptly. In many practical aspects, the behaviour of adhesive contact can be 
modelled by a thin adhesive layer as a continuous elastic spring distribution with normal and 
tangential stiffness parameters. This layer is usually called weak interface [3], [5]. 
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Fig. 3: Adhesive contact response of the crack driving force σd, the damage ζ and the stress σ. 

σd - is a crack driving driving force [J/mm2], ζ  – is a interface damage parameter [-] and 

σ  - is a mechanical stress [MPa]. 

The linear response of the adhesive refers to the conception of the so-called weak solution 
given by the energetic formulation. These formulations are controlled by stored energy functional ES 
and also dissipation potential R. The mathematical formulation of the energy approach of 
delamination with adhesive type contact is inducted in Section 4. 

 3.1 Cohesive-type contact interface model 
Another possibility is to consider an engineering approach which supposes the continuous 

response of the mechanical stress σ. It is referred to as a cohesive-type model, see [5], [9], [12]. 
Assuming the cohesive-type contact requires some modifications in energy approach formulation of 
the aforementioned adhesive model. One effective option how to achieve the cohesive effect is to 
modify the energy stored functional ES from the adhesive model, for more details, see Section 4.2 and 
also [2], [5]. The failure mechanism starts, when the mechanical stress σ, linearly increasing with u 
until the crack driving force σd, reaches activation threshold fracture energy Gd. Then ζ starts to 
evolve from one non-linearly until it arrives at zero [3], [5]. 

 
Fig. 4: Adhesive contact response of the crack driving force σd, the damage ζ and the stress σ, with 

denoted adhesive k1 and cohesive k2 stiffness parameters, respectively. 

In consequence of modification in energy formulation, i.e. addition of the delamination term 
ζ2 and cohesive stiffness parameter k2 the mechanical stress decays as 
 ( ) .2

21 ukk ζζσ +=  (2) 

Discussed cohesive contact theory in Fig. 4 does not reflect the influence of the interface 
plastic slip π. This additional effect is included in energy formulation in sense of assuming Mode II 
[3]. The main feature of cohesive contact theory is that it is separately quadratic both in the u and ζ 
variable. So we can conveniently apply quadratic programming algorithms for solving global 
minimization problem, see Section 4.2 and [2], [5]. 
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 4 MATHEMATICAL CONCEPT OF THE DELAMINATION PROCESS 
This section reviews the mathematic formulations of the energetic conception of failure 

mechanism with both aforementioned defined contacts. The energetic solution is acquired by 
variational formulation (Ritz method), which exploit developed numerical treatment of inelastic 
process. This treatment has been evolved in accordance with energetic approaches. 

 4.1 Energetic formulation of interface contact model, Griffith concept 
To define the energetic conception of the delamination contact problem, let us consider the 

energy stored (involving external loading) of the system at time τ, obeying the interface damage 
(Mode II) and a kinematic-hardening-plasticity model, with defined the plastic slope kh [2]. 
The numerical analysis defines two following mathematical forms of stored energy functional ES: 

• The adhesive contact formulation  
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• The cohesive contact formulation  
In accordance with conception introduced in Section 3.2, we can adduce the modified 
formulation of the stored energy functional of adhesive model. In consequence of adding the 
cohesive contact parameters (see Section 3.1), acquiring required non-linear dependence of 
the investigated parameters [3], [5]. The following stored energy functional is obtained: 
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kH – is the hardening stiffness [MPa/mm], u – are the displacements [mm],  
π – is the plastic tangential deformation [mm], ES – is a stored energy of the system [J]. 
The inducted energetic formulation is assumed in the sense of adhesive and cohesive contact theory 
presented in [5], and it is valid for the state variables u, ζ satisfying: 

• The initial conditions 
 ( ) 00 uu = , ( ) ,0 0ζζ = ( ) .0 0ππ =  (5) 

• The condition of Signorini unilateral contact [ ] 0≥nu , where the relative normal  

displacement [ ] ( ) ABA
n nuuu .−=  is introduced. 

• The prescribed boundary conditions for displacements and tractions 
 ( ) .0, =Γ= ηηηη tontwu u  (6) 

The interface scalar damage variable ζ satisfies the constraints .10 ≤≤ ζ  The η
ijklC  expresses 

the fourth-order tensor of elastic stiffness and εij is a small tensor related to bulk displacements u [2]. 
For activation of delamination the process requires a specific energy Gd [J/mm2]. The Dissipated 
energy (well known as a dissipation distance) is then 

 ( ) ( ) Γ⊂⊂=
22 \ 2121 d:,

AA Cd AAifSxGAAR  (7) 
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In particular, the dissipated energy does not depend on particular modes. The philosophy of 
such quasistatic evolution is related with the Griffith criterion [1], [5], implying that the crack grows 
as soon as the energy release is bigger than the toughness, determined by Gd in (7) [1], [5]. The 
dissipation potential R can be defined by degree 1 positively homogeneous functional and reflects the 
rate-independence of the pertinent delamination variables [3]. 

 ( ) ( ) Γ+= Γ d,
C

yielddGR πσζπζ   (8) 

ζ   – is a partial derivative of the damage parameter according to time τ ,  

π   – is a partial derivative of the plasticity according to time τ , 
Gd  – is a minimum interface fracture energy required to initiate a unit interface crack [J/mm2], 
σyield  – is a yield shear stress [MPa], R – is a dissipated energy of the system [J].  

We consider the evolution process in the fixed finite time interval [0, T] [2]. The required 
energetic solution is a type of a weak solution and can be obtained by an implicit time discretization 
of (3), (4) and commonly acquired by solving the following global-minimization problem: 

 minimize ( ) ( ) ( ),,,,,,, 11 −− −−+→ λ
τ

λ
τ ππζζπζλτπζ RuEu  (9) 

with respect to (u, ζ, π) and subjected to aforementioned conditions. The symbol λ defines the 
appropriate loadstep. 

 4.2 Mathematical model implementation for the interface failure by sliding slip  
Essentially, the function v depends on time step τ such ( )τv is the function of 1x . Anyhow, 

it can be prescribed by a gently changing function in order to consider the imperfections and to take it 
into account (changing of the thickness or of the bulk shapes) [2]. 

 

 
Fig. 5: Contact model for tangential loading by sliding slip. 

 
In agreement with the conception initiated in [5], we can adduce the formulation of the stored energy  
as (3) or (4). Assuming the loading by sliding mode and considering both bulk layers rigid ES, 
removes the dependence of the crack evolution on the bulk material properties [2]. Thus, we can 
suggest the reduced forms of the stored energy functional ES from (3), (4), respectively as: 
The adhesive type contact 

 ( ) ( )( ) .
2
1

2
1,,, 22 Γ






 +−= Γ dkvkuE
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The cohesive type contact  

 ( ) ( ) ( )( ) .
2
1

2
1,,, 222

21
Γ






 +−+= Γ dkvkkuE

C
HttS ππτζζπζτ  (11) 

 5 COMPUTER IMPLEMENTATION OF THE CONTACT MODEL 
To achieve the energetic solution, the numerical implementation commonly requires 

time and spatial discretization, separately in consecutive form. 
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• The time discretization considers the equidistant partition of [ ]T,0  and provides the 
solution at time steps defined by an increment δ, δ > 0 thus τλ = λδ for δλ /,,2,1 T= , 
starting from the initial conditions (5).  

• The spatial discretization, also needed for the computer implementation, exploits the 
choice of finite elements for u and ζ  on the boundary CΓ . 

For the explanation of discretization process in both models, see [2],[3]. The minimization 
problem (8) then provides the solution at the successive time steps defined by the parameter λ  as 

 minimize ( ) ( ) ( ).,,,,, 11 −− −−+= λλλ ππζζπζλδπζ RuEH S  (12) 

Indeed, the functional Hλ is non-convex, so it requires applying a special numerical treatment 
in the minimization process. By Alternative Minimization Algorithm (AMA), we achieved to split the 
minimization to alternation between minimization with respect to both interface variables. Each of 
these being a minimization of a convex quadratic functional, so the quadratic programming methods 
can be applicable properly [3], [6]. For more detail see [2], [16]. The code of the applied algorithm 
(AMA) was implemented in MATLAB [11]. The convexity of both acquired quadratic functionals 
effectively enables to exploit bound constrained minimization methods (conjugate gradient method 
(CGM) with constraints) for reaching the global minimum. The Polyak´s algorithm was used as an 
appropriate CGM for minimization procedure [2]. 

 6 NUMERICAL EXAMPLE OF THE INTERFACE CONTACT MODEL 
 6.1 Description of assumed contact model properties  

The aforementioned simplified case of the interface contact model (see Section 4.2) with 
defined both types of contact have been subjected to numerical analysis in MATLAB. The investigated 
unknown interface variables (damage ζλ, plastic slip πλ) remain along the interface for each load 
step λ [2]. The loading of the layered structure is considered along the interface in the sense of 
Section 4.2, and it is prescribed by slightly changing tangential displacements ( ) λλδ vv = as 

 ( ) ( )( ) ,sin5150/sin 011 vxxv πλπλ +=  (13) 

with 002.00 =v mm and Ludolf´s constant π. The prescribed tangential displacements ( )1xv =λ  
govern the whole loading process for each of loadsteps ζ = 100 by prescribed sin-function v  for a 
period, see [2]. The material of the interface is epoxy resin, with following elastic properties: 
Young´s modulus 3104.2 ×=E MPa, Poisson´s ratio 33.0=v . The length of interface layer is 

1000=l mm and we consider layer thickness 2.0=h mm. The corresponding stiffness parameters 
were suggested according to the assumed model: 

• For the adhesive contact model was considered 3105.4 ×=ak MPamm-1. 
• For the cohesive contact model we split the stiffness into two parts:

21 ttc kkk += ,
31045.0

1
×=tk MPamm-1, 31005.4

2
×=tk  MPamm-1. For more parameter detail see [10]. 

 The essential parameters that govern the crack propagation in the interface are: the elastic 
brittle fracture energy 2´10 −=dG mJmm-2, plastic yield stress 3.5=yieldσ MPa, hardening slope for 

plastic slip is 2105×=Hk MPamm-1 [2],[10]. 

 6.2 Results of the analysis of the interface rupture by sliding slip  
The energy evolution process 
The energy evolution of the delamination process for both analysed models is shown in Fig. 6 

and Fig. 7. The presented three curves depict: the energy stored in the interface, dissipated energy 
due to plastic deformation and rupture of the interface and the total energy which is the sum of 
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previous components [3]. The non-monotone behaviour of the total energy was acquired in 
consequence of loading and unloading process by λ-dependent sin function of (12), see also [2], [3]. 

 

 
Fig. 6: Energy evolution of crack propagation at the adhesive contact model. 

 

 
Fig. 7: Energy evolution of crack propagation at the cohesive contact model. 

 
The evolution of the interface variables 
The achieved solution of model behaviour is depicted in following figures. The initiation and 

propagation of the interface crack can be conspicuous in all the graphs. The main feature occurred in 
the graphs pertinent to the cohesive model is the continuous non-linear. It can be obviously observed 
the difference between coherency response of the interface variables in adhesive and cohesive model 
[2], [3]. So in agreement with consequent graphs let us observe that the damage parameter ζ changes 
from one to zero abruptly for adhesive model, while for the cohesive more or less continuously, see 
Fig. 8. The plastic deformation remains constant after the initiation of the crack, Fig. 10. The parts of 
the undamaged interface layer still hold two rigid bulks together, as it can be evidently observed in 
Fig. 9 and Fig. 10. 
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Fig. 8: The damage parameter ζ (a) adhesive model, (b) cohesive model. 

 
Fig. 9: The mechanical stress (a) adhesive model, (b) cohesive model. 

    
Fig. 10: The plastic slip π  (a) adhesive model, (b) cohesive model. 

 7 CONCLUSIONS 
The published study presents the comparison of the model response with adhesive and 

cohesive type contact. The investigated models yield a sensitive approach to the crack mode which 
has been reached by considering the interface contact by two interface variables. The proposed 
cohesive-type contact provides in many situations a more realistic behaviour than the adhesive and 
was acquired by mere adding of a new delamination term. The proposed numerical models confirm 
the expected response in accordance with the applied theory and enable its applicability in many 
aspects of engineering practise.  
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