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Abstract

Phenomenological models of continuum mechanics applied on the rigid body are more or less
idealized. Experimental measuring showed there is a plastic flow, respectively relaxation in real rigid
bodies, i.e. stress is the function of strain, strain velocity and the higher time derivatives. The paper
deals with the rheological models based on the Hook elastic and Newton viscous masses.
The corresponding constitutive equations are described.
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1 INTRODUCTION

Classical elasticity theory studies the mechanical response of the perfectly elastic body to the
ambient acting, where according to the Hook’s law the stress is a linear function of the strain being
independent on the deformation velocity. On the other hand in hydrodynamic problems, where
Newtonian laws are valid, the stress is linearly proportional to the strain velocity, but independent
from the strain itself [7, 8, 10].

Phenomenological models of continuum mechanics applied in mechanical and mathematical
modeling by using boundary value problems are more or less idealized. Considering the experimental
measuring [11, 12, 25, 29] it is easy to find out that in real rigid body the plastic flow, respectively
relaxation of the stress is evident as the effect of the outer load. In another words, the stress can be the
function of not only strain and strain velocity, but also the higher order time derivative of the strain,
e.g. [3,28].

The study of the materials, where both the rigid and the liquid properties are performed, is
included in the visco-elasticity theory. [3, 13-15, 18, 20, 22]. The base of the visco-elasticity theory
was introduced in the two last centuries in the papers of Maxwell [21], Boltzmann [2], Kelvin [32]
and Voigt [35].

2 CONSTITUTIVE EQUATION AXIOMS

Causal principle: The stage of the body £2 in the time 7 is determined by the only history and
not by the future, e.g. [1,4]
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Determinism principle: The stress in the particle X € £2 in the time ¢ is determined by the
movement history X' of the movement of the body £2 until the time ¢

o(X,0)= F (F'(X',1;X,1) , (1)

t=—c0

where F “constitutive operator” is a general operator expressing admissible functions of the
body movement. The operator has to fulfill the conditions of the invariance, e.g. [2, 4].

Local effect principle: According to the determinism principle the movement of the particle
Y € £ that is not situated “too near” the particle X € £2, X # Y can influence to the stress

in the particle X . In the sense of contact stresses definition, the stresses are determined by the
interactions of the particles in the infinitesimal neighborhood of the point X . In terms of this

definition we can further neglect the movement of the particles of the finite distance from X
when calculating the stresses in the neighborhood of the point, i.e. [4]

X'=(,s)=x", 520, Ye N(X), @)
where N( X ) is a neighborhood of the point X so it is valid
FGLY.0= F (X, X,10). 3)

t=—oc0
Objectivity principle: In the phenomenological theory of modeling we presume the independence
of the various strain measures and stress velocities on the position and movement of observer.
Also it is valid that the material properties expressed by the constitutive operator are independent
on the observer, accordingly they are objective. That means when we would like to describe the
real behavior of the materials, the constitutive equations have to be objective, i.e. if it holds [2, 4]

o(¥,t)= F (3(t); X,1). (4)

t=—c0

Then the constitutive operator has to read

o' (x,i)= F (x(i); X,1). (5)

t=—o0

where X, 6 are the quantities dynamically equivalent to X and 6 .

3 THE FUNDAMENTAL SUBSTANCES AND THEIR RHEOLOGICAL
MODELS

Obviously, we describe the rheological phenomenon by the working diagram which express
the relationship between a two physical parameters; O ~€, €~0, O ~t, €~ t We often use also
three dimensional working diagrams O ~€ ~t, €~O ~ ¢, etc.

There are some essential rheological components [28]: solid material, flowable liquid, elastic
material. By compounding of these components we can get more complex rheological models by
using which we can concisely express the rheological properties of various real materials. In our case,
we will start from the two basic rheological substances, (Fig. 1).

141



a) p © b) P °
== (N)
L > oo g

Fig. 1: Rheological models of elastic substance and viscous liquid, a) Hook elastic material, b)
Newton viscous liquid

Working diagrams of both substances can be expressed by the known formulas
(H): 6 = Es (6)
N): 6 =7j¢, ™

where 6, € are the stress and strain tensors, E elasticity module, 7] viscosity coefficient (in 3D
represented by tensor operators). The dot above the tensor stands as the time derivative sign of it.

4 CONSTITUTIVE EQUATIONS FOR ANISOTROPIC MEDIUM

Let us consider a quasi static problem where we neglect the outer inertial loading influence on
the infinitesimal strains of the body. In the case between the deformations and stresses there is a
relation as follows:

6 =Hs. ®)

where H=H"™ is a tensor operator of the 4™ order which is, according to the Onasger theory,
symmetric for linear rheological models[24].

Hi/'kl — Hkli/' — Hklii — Hlkii 9)
and also positive definite — according to the 2" thermodynamic law [5, 33]. The operator can be of
three form of representation, e.g. [6, 7], integral, differential and integro — differential form.

(a) In the case of differential representation of equation (8) it holds [5, 6]

K" =K¢ (10)
respectively
Q"e=Q,0. (11)
where
0
KO=T][+x), K”=1 (12)
n=l1 at
0
Q"=[I¢ +4). Q”=1 (13)
n=1 at
are scalar operators and
.\ S.A 9"
K,=2 K, P (14)
n=0
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n

(5) ZQ(”) o (15)

n=0

are tensor operators, X,>0, 4 >0 are inverse values of the relaxation time (plastic flow time).

Equations (10) and (11) represent a generalization of the Lee equations for isotropic viscoelastic
medium [5, 7, 20].

(b) In the case of integral representation of equation (8) we can write the equation (8) in the form, e.g.
[6, 7]

I z—r)—dz' (16)
0

j (t—z‘)%dr, (17)
0

where G(t) is a tensor operator of relaxation functions and J(7) is a tensor operator of the

plastic flow (both tensors are of the 4" order for anisotropic media). By using the Laplace
transformation to the formulas (8), (10), (11) we get

é=H(p)& (18)
K" (p)s = I7<<s>(p)5 (19)
Q" (PE=QY(p)s, (20)

where for classical Laplace transform (with homogenous initial conditions) it holds
F=F(p)=[f@e"d. 21)
0

where gn —p"P is the parameter of Laplace transform. Similarly, taking the Laplace transform
t"

of (16), (17) we get
6 =G(p)pe (22)
T=J(p)ps. (23)

5 CONSTITUTIVE EQUATIONS FOR SOME RHEOLOGICAL MODELS
Voigt rheological model
Structural formula is: (V)= (H )| (N): (Hook’s substance) | (Newton’s viscous liquid) in

. " ikl . . ol jkd .
parallel connection; E = E”" is a tensor — operator of elastic modulus, 1 =7""is atensor —

operator of viscous modulus.
In this case, the constitutive equation of the rheological model is of a form

c=(ﬁl+ﬁ%)8, (24)

where stress and strain tensors read
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(25)

Fig. 2: Rheological model of Voigt material
After applying of the Laplace transform we get
&=(E+pn)E (26)
and, after inverting
E=det (E+ pi)A(p)5. 27)
where K( p) is an adjoint p-matrix. Let us denote by the symbol A( p )the expression
A(p)=det( E+ p1) - By comparing (20) and (27) we get further

Q" (p)=4(p). Q(p)=F(p). (28)
By the decomposition of the tensor operator in the equation (27) to the partial fractions we get
6
=Y A(p)/(p+2,)5, (29)
n=l1
where
A(p)=F(-2,)/AV(-2,)., (30)

where dA(p)/ dp‘ i = AV (=2, ) and A, are equal to the negative values of the roots of the

determinant equation A('p ) =0 and they represent inverse values of the viscous flow time. When

we extend Voigt model by the Hook mass and Newtonian viscous liquid in the serial connection, we
can rearrange the formula (29) into the form

6 —_— A
5=[ZA(ﬂ»n)/(p+&,)+C+p‘l?]& 31)
n=l1

where C = ( E )™, ¥=(n)"', and the corresponding structural formula will get the form

{(H)=[(H)=(N)]=(N)} . (32)

By similar attempt we can derive the constitutive equations for a model with the structural
formula

{(H)=[(N)=(Ny)=. = (N,)]} - (33)

According to [3, 28] we can say that the process of the linear creep can by realized by a
complex rheological model composed from the fundamental substances (H) and (N) with the
following structure:

{H)-[)-V) ==V, )]-(N)}, (34)
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where by the symbol (7, ) we have denoted the i-th Voigt rheological model. By using the inverse

Laplace transform A™! on the equation (29) we get a strain tensor in the form
PN 06
)= 4'A4)| [1-e*7)—dr. (35)
- T
n=1 0

When we compare the equations (17) and (35), we can see that (35) is an equation of the
Boltzmann type with the plastic flow tensor in the form

j(t)=iﬂ;1K(x,,)[1—e‘”]. (36)

n=1

Maxwell rheological model

A
v
‘

E=3 (N)

Fig. 3: Rheological model of the Maxwell type
The structural formula (M) = (H) — (N): (Hook’s mass) — (Newton viscous liquid) in the serial

connection; C=C W3S a tensor-operator of the elastic modules, ? = }/jkl tensor-operator of the
viscous modules. With respect to equation (11) we have

50 A a0
W=—, Q=C=—+7. 37)
o ot o !
In this case the constitutive equation of the rheological model will be of the form
d 0 .
9e=(¢L+i)e. (38)
T T

The mechanical response of this model is the fact that resulting strain equals the sum of strains
of the fundamental masses (H) and (N). The stresses in (H) and (N) are the same. Then

,£=Co (392)
d ..
ENSZNSZ'YG (39b)
€=,€+,E (39¢)
d d £ 0
—e=—(,&+,8)=(C—+7)o. (40)
Y aZ(H vE)=( Y Y)
By using the Laplace transform we get
pE=(pC+7)5. (41)

After inversing (41) we can express the stress tensor
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& =det”(pC+7)pP(p )%, (42)

where det( pé +79)=A4,(p) is in general a polynom of the 6" degree of parameter p and ﬁ( p)
is an adjoint matrix.
In the following we attempt likewise in the case of Voigt rheological model. It means we

decompose the expression P/ A4,,( p) to partial fractions and get

_ & pB(k )
n=l1 p + K‘n
where
= P(-K,)
B(ky)=—7—""~, (44)
VA (-x,)
where we denoted
dA,, (p)
(1) M
A (=) " - (45)

and K, are negative values of the roots of the determinant equation A, (p) =0 and they represent

inverse values of the relaxation time. When we extend the Maxwell model by the Hook mass and
Newton viscous liquid in the parallel connection, the relation (43) can be extended analogously as the
relation (31), i.e.

6= (g —ppBilz((:) +E+ pﬁjﬁ (46)
and the corresponding extended rheological model structural formula will be of the form
(H)|(N)‘[(H) -(N)]= (H)‘(M (V) (47)
and after applying A" on the (43) we get
o\ [k OF
6=ZB(Kn)-([€ "(t )Edf’ (48)

which is the representation of the Boltzmann type equation for the Maxwell rheological model with
the tensor function of relaxation in the form

A 6 —_—
G(1)=>Y B(x, ™" (49)
n=l1

Zener rheological model

(Hi)
Ew

Fig. 4: Rheological model of the Zener mass
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From the analyses it is evident that though the Voigt model represents the creep process well,
it does not reflect immediate response of the instantaneous deformations. This drawback can be
avoided by the parallel connection of the Hook mass with Maxwell rheological model. By doing this
we obtain Zener rheological model, Fig. 4.

Structural formula (Z) = (H, l)|[(H ,)—(N,)]: (Hook’s matter) | [ (Hook’s matter;) —

= E(”Ik)l is a tensor — operator of elastic modules, C*’ = Cy(.,f/ is a

(Newton viscous liquid,)]; E(
tensor — operator of elastic modules of the mass (M), ?(2) = ;/l;.,f/ is a tensor — operator of viscous
modules of the mass (M). For mechanical response of the Zener model we have

6=,6+,06, ,&€=,¢&, (50)
where , 06 is stress, ,& is strain in Maxwell model. Considering (41) for Laplace transform of the
stress we get

&=[p(pC? +y®)" +E,]T. (51)

We can hereinafter rearrange the equation (51) in the sense of equation (43) and the first
equation of (50) to the form

-
5=y 2Bo) g (52)
n=l1 p+Kn

or after using A' where we get the original for the stress tensor

fre & — —K, (-7 Je
G:J.[E(l) +ZB(2)(K'n)e n(t )]a_‘[
0

n=1

drz, (53)

where

6
G()=E, + Y Ba(x,)e™

n=l (54)
is a relaxation tensor. Of course, it is possible to use also the other types of rheological models,
the various types can be found e.g. in [28] as Poynting — Thompson model, generalized Maxwell
model, Voigt model with a finite number of fundamental matters, complex visco-elastic masses with
several Voigt and Maxwell groups, etc.

While switch-over to the infinite number of fundamental masses the integro-differential
models can be used.

6 CONCLUSION

Solid phase rheology, and especially its branch visco-elasticity and visco-plasticity, e.g. [3-6,
19, 23, 28] deals with deformation and stress analysis not only in steady state, but it observes also the
time changes and time change velocities. It solves the relations between the stresses and strains, their
time derivatives and time integrals. Various applications of the rheological process are synoptically
presented in [19, 26, 34] where also the applications in industry, but also in medicine, in the
diagnostic are introduced.

In this paper the differential operator form of constitutive equations are emphasized for
linear visco-elastic anisotropic continuum with physical properties invariant in time. We focus to
constitutive equations creation for material of so called 1% degree, where the stress tensor depends on

the motion X( X ,t) namely by means of strain gradients. Derived procedures are applicable for
isothermal boundary value problems [16].
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The weakness is the numerical realization of the inverse Laplace integral transform, which a

lot of literature is devoted to [9, 25, 27]. We can mention [23], where A transform perform the
improved Schapery — Erdélyi method for analysis of layered half-space.

A special case, so called “time invariant aging theory” with application of the Schwartz

distribution theory for linear problems was elaborated by Kovatik [18]. Suitable methods for visco-
elastic properties modeling of structures made from real materials is the application of “weakly
singular kernels” elaborated e.g. by Koltunov [17], in Slovakia by Sumec and Lichardus [30], Sumec
and Potucek [31], respectively for practical applications of space and planar building structural
elements.
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