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Abstract 

The paper deals with the analysis of load-carrying capacity (LCC) of a thin-walled steel beam 
under compression the axis of which is randomly spatially curved. Open and close thin-walled cross-
sections are considered for the beam, respectively. The initial curvature is modelled by a random 
field. The Latin Hypercube Sampling Method was applied. The load carrying capacity is calculated 
by geometrically nonlinear solution using ANSYS software. The results are presented both in 
histograms and in a table. The LCC statistical characteristics of beams with open and closed cross-
sections have been compared. A comparison with the LCC according to the standards is carried out as 
well. 
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 1 INTRODUCTION  
The initial curvature of beams is modelled mostly in the form of a half-wave of the sine 

function. For these cases, the solution in explicite form is at the disposal [1,2], and therefore it is not 
difficult to calculate the load carrying capacity from the response function, if the amplitude of initial 
curvature e0 is assigned. The explicite solution is possible under the condition when the deformation 
of the axis of loaded beam is affine to the initial curvature. However, it is not a rule that the initial 
axial curvature must have the shape of the half-wave of sine function. In the real state of facts, the 
general curvature is met much more frequently, and it concerns namely not only the plane one, but 
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also the spatial one above all. For such cases, an explicite solution cannot be obtained, because the 
axis of the deformed beam is not affine to the initial curvature [3].  

The present paper deals with an analysis of the load carrying capacity of a steel beam under 
compression the axis of which is randomly spatially curved. For this beam, thin-walled cross-sections 
are selected, both close and open. The warping torsion is connected with loading of beams having 
such cross-section. The warping torsion occurs when warping is prevented. Warping can be limited, 
e.g., by structural arrangement (bonds preventing the warping), change of twisting moment along the 
beam axis and/or by the change of shape and dimension of cross-section along the beam axis. The 
warping torsion can also occur in the case when the beam is loaded by transverse load action, not 
passing through the shear centre or by excentrically acting longitudinal load action. In these cases, the 
warping torsion is combined with bending, shearing, compression or tension, and general bending-
torsion loading action occurs. 

The solution of thin-walled beams was based on the presumption of rigid cross-section, the 
geometry of which did not change under the influence of load action.The load carrying capacity of 
the beam under compression was then calculated by means of geometrically nonlinear solution by the 
ANSYS software. 

 

 2 CALCULATION MODEL 
A two-hinge beam with length L = 2.798 m was considered. Its load carrying capacity was 

examinated for the value of non-dimensional slenderness λ  = 1.0 which is defined, in dependence on 
the beam length and on the radius of gyration of cross-section, in the standard EUROCODE 3. 

For the analysis of load carrying capacity of the beam mentioned, the beam element 
BEAM 188 with seven degrese of freedom was applied by the ANSYS software (3 degrees of 
freedom correspond with translations in the x, y, and z directions, other 3 ones, with rotations around 
the x, y, and z directions, and the 7th degree of freedom corresponds with warping magnitude. The 
beam scheme is presented in Fig. 1. In node a, there are prevented displacements in all directions of 
all three axes, and also the rotations around axis x. Further on, it is considered that both end cross-
sections in nodes a and b cannot warp, so that the model could correspond with real laboratory 
experiment as much as possible. Subsequently, the model is loaded by displacement in node b in 
direction of axis x. In node a, the value of reaction in direction x is subsequently distracted to 
determine the load carrying capacity (see Chapter 3). 

 
Fig. 1: Scheme of the beam 

 2.1 Applied cross-sections  
For the given problem, two symmetric quadratic thin-walled cross-sections were applied, the 

first one being close, and the second, open (an incision was done in the middle of one side). 
The cross-sections are presented in Fig. 2. The beam is modelled so that its axis passes through the 
centroid of the cross-section. 
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Fig. 2: Cross-sections applied: left - close, right - open (with an incision) 

The close cross-section is symmetrical in conformity with both axes, so the position of the 
centroid Cg corresponds with the position of the shear centre Ss. In case of the open cross-section, the 
position of shear centre was displaced according to Fig. 2, right side. The cross-section characteristics 
of both cross-sections are given in Tab. 1. 

Tab. 1: Selected cross-section characteristics 

Cross-section characteristic Close cross-section Open cross-section 

Area A [m2] 1.6799 . 10-3 1.6787 . 10-3 

Second moment of area Iy [m4] 1.4865 . 10-6 1.4848 . 10-6 

Second moment of area Iz [m4] 1.4865 . 10-6 1.4865 . 10-6 

Warping constant Iω [m6] 2.8264 . 10-12 6.0957 . 10-9 

These cross-sections are then applied for each realization of spatial curvature of the beam axis 
(see Chapter 2.2). Taking into consideration the fact that here, the initial curvature is independent of 
the cross-section applied, the open cross-section is put into four positions caused by rotation always 
by 90 °. Then, the load carrying capacity of the given realization is calculated for five cross-sections 
according to the Fig. 3. 

 
Fig. 3: Cross-sections of the beam – designation  

 2.2 Random input quantities and random field of initial axial curvature 
The Gaussian probability distribution with mean value 297.3 MPa, and standard deviation 

16.8 MPa [4] was considered for yield strength fy, The initial curvature of beam axis was modelled on 
behalf of eleven nodes interlain by spline – Fig. 4. Each of these nodes had the Gaussian probability 
distribution with zero mean value and standard deviation 0.0015248 sin(π xi / 2.798) m, where xi is 
the position on the beam axis. The value 0.0015248 was calculated, based on the presumption that, 
within the tolerance limits ±0.15 % L, there were 95 % realizations of the maximum initial spatial 
deformation, beam length L being the calculation parameter. The values of coordinates in each of the 
two planes are mutually correlated by means of the correlation matrix. This represents a random field 
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with the correlation length Lcor = 1.44165 m. The correlation is considered only among the values of 
coordinates of the nodes on one plane. In other words, the curvature on one plane is independent of 
the curvature on the second plane. Random realizations both of yield strength and initial curvature 
were simulated applying the Latin Hypercube Sampling method [5,6] implemented in the software 
Freet. 

 
Fig. 4: Spatial curvature definition of the beam axis 

The other input quantities – Young’s modulus E of steel and geometrical characteristics of the cross-
section – were considered to be deterministic ones, and were considered by their average values. In 
the calculation, there was subsequently sought the force for which the given realization of yield 
strength would be reached for the given realization of inital curvature of the beam axis. There were 
simulated 60 random realizations of beam curvatures, and 60 random realizations of yield strength. 
Each realization of the beam corresponded with just one realization of yield strength. An example of 
one realization of initial curvature of the beam axis is presented in Fig. 5 and Fig. 6. 

 
Fig. 5: Curvature of the beam axis on the plane xy for one random realization 

 
Fig. 6: Curvature of the beam axis on the plane xz for one random realization 
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 3 STATE OF STRESS AND LIMIT STATE 
Under loading, the beam is in the state of combined stresses. To evaluate the load carrying 

capacity, it is necessary to know when the state of stress is approaching the limit stress state in the 
material; in our case, the yield strength fy is concerned. As the yield criterion, the von Mises (Huber, 
Hencky) yield criterion was used in the form: 
 00 =−= σσf  (1) 

where: 
σ  – is equivalent stress [Pa] which is: 

 ( ) ( ) ( ) ( )[ ]222222 6
2
1

zxyzxyxzzyyx τττσσσσσσσ +++−+−+−=  (2) 

and 0σ  corresponds to fy. For the solution by the beam model, it is supposed that 0=== yzzy τσσ . 
Thus, the formula (2) is reduced to the form: 
 ( )222 3 zxxyx ττσσ ++= . (3) 

Although steel can get into the plastic yielding, and be effective in it, the plastic reserve is 
very low in a similar case (approximately 3 %). Therefore, the state at the elastic limit, i.e., the state 
when plastic yielding does not still take place, is considered to bet he limit state in this case. The limit 
state occurs, if yield stress fy is reached. 

 3.1 Stress in open thin-walled cross-sections 
A simplifying assumption on the deformation of a thin-walled open profile is the hypothesis 

that the cross-section will translate as a rigid whole on its plane. This translation is the result of 
displacements v, w in directions of axes of coordinates y, z, and of rotation ωx around a certain fixed 
point. The relative angle of warping torsion will be obtained by the derivation of the rigid body 
rotation:  

 Θ=
x

x

d
dω . (4) 

The displacement in direction x is given: 
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Thus, the proportional longitudinal deformation can be determined as: 

 )(0 szwyvu
x
u

x ωε Θ′−′′−′′−′=
∂
∂= . (6) 

The component xσ  is calculated in the same way as when calculating the linear stress state. 
After substituting the proportional longitudinal deformation according to (6), it is obtained: 
 [ ]0 ( )x xE E u v y w z sσ ε ω′ ′′ ′′ ′= = − − − Θ . (7) 

Te conditions of equivalence are as follows: 
  =

A xx NAdσ , (8) 

  −=
A zx MAydσ , (9) 

  =
A yx MAzdσ , (10) 

  =
A x BAs d)(ωσ , (11) 
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where: 
B – is the bimoment [Nm2]. 

For main sector coordinates and central axes, the conditions of equivalence can be rewritten: 
 0uEAN x ′= , (12) 

 wEIvEIM yzzz ′′−′′−=− , (13) 

 wEIvEIM yyzy ′′−′′−= , (14) 

 Θ′−= ωEIB . (15) 

The final longitudinal stress in a thin-walled open cross-section can be then expressed: 

 ωσ
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z

zx
x ++−= . (16) 

At the warping torsion, secondary tangential stresses which superpose with primary ones 
corresponding to free warping torsion occur in transverse and longitudinal sections. The primary 
tangential stress state gets changed linearily along the cross-section thickness, and is given by the 
expression: 

 n
I
M

t

x
xs

1
1 2=τ  (17) 

where: 
1Mx – is the warping moment corrersponding to the free warping torsion [Nm], 
n – is the coordinate measured in the direction of the normal line to the central line [m],  
It – is the second moment of area in warping torsion [m4]. 

The secondary tangential stress 2
xsτ is uniformly divided along the cross-section thickness, and 

if the axes of coordinates are the main central axes again, the stress is expressed as follows: 
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where :  
t  – is the cross-section thickness [m], 
Vy, Vz – are shear forces [N],  

yS , zS  – are statical moments of incomplete cross-section area [m3], 

ωS   – is the warping statical model of the incomplete cross-section area[m4], 
2Mx  – is bending torsional moment [Nm]. 

The general tangential stress in a thin-walled open cross-section will be obtained by addition 
of expressions (17) and (18): 

 










+++=+=

ω

ωτττ
I
SM

I
SV

I
SV

t
n

I
M

x
y

y
z

z

z
y

t

x
xsxsxs

2
1

21 12 . (19) 

 3.2 Stress in close thin-walled cross-sections 
Similarly as in case of beams with open cross-section, it can be assumed that the shape of 

transverse sections will not get changed during deformation. For warping torsion, it cannot be 
assumed that warping is proportional to relative warping angle Θ, as it was in case of open cross-
sections. However, it can be assumed that the warping of section in the point x is given by the product 
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of unit warping and of warping function f(x). The displacement of the general point of member 
determined by coordinate x of corresponding section and coordinate s on the central line of thin-
walled cross-section can be expressed by the relation: 

 ( ) )()(, sxfsxu ω−=  (20) 

where: 
s –  is the length of central line of the direct section, 

)(sω  – is the unit warping taken negatively [m], 

f(x) – is the warping function.  
Assuming that longitudinal layers of a cross-section do not mutually affect each other the 

during deformation, the normal stress in transversal sections corresponds to their warping: 

 )()( xfsE
x
uEx ′−=

∂
∂= ωσ  (21) 

For the close cross-section, the bimoment is defined by the expression 

 =′−=
A x AxfEIxB d)()( ωσω

 (22) 

where: 

ωI  – is the warping second moment of area [m6]. 

For the longitudinal stress at warping torsion, it is obtained by combination of equations (21) 
and (22)  
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Taking into consideration that also the normal force and bending moments act on the cross-
section, the resulting normal stress is given by superposition of all these partial stresses analogously 
as in case of beams with open cross-section as follows: 
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The following relation holds for tangential stress at St. Venant torsion: 

 
tA

M x
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1
1

2
=τ  (25) 

where: 
A0 – is the area bounded by central line of the cross-section [m2]. 

The resulting tangential stress is given again by superposition of the primary and the 
secondary stress due to warping tension and tangential stress caused by bending. 

 4 LOAD CARRYING CAPACITY 
The load carrying capacity values of all the sixty random realizations of beam are presented by 

histograms in Fig. 7 to Fig. 11. The Gaussian probability distribution can be interlain, by these 
histograms, with satisfactory accurateness. The hypothesis on normality of distribution for no cross 
section is not refused by the Chi-quadrate normality test on the significance level 5 %. 
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Fig. 7: Histogram of load carrying capacity of beams with cross-section No. I (close cross-section) 

 
Fig. 8: Histogram of load carrying capacity of beams with cross-section No. II (open cross-section) 

 
Fig. 9: Histogram of load carrying capacity of beams with cross-section No. III (open cross-section) 

 
Fig. 10: Histogram of load carrying capacity of beams with cross-section No. IV (open cross-section) 
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Fig. 11: Histogram of load carrying capacity of beams with cross-section No. V (open cross-section)  

 
The extended statistics of load carrying capacity can be seen in Tab. 2. Based on the standard 

EN1990, the load carrying capacity is calculated as 0.1% quantile, if the design reliability index 
βd = 3.8. Therefore Tab. 2 also contains the value 0.1% quantile of normal distribution. 

 

Tab. 2: Statistics of load carrying capacity  

Cross-section 
Mean value  

[kN] 

Standard 
deviation 

[kN] 

Coefficient of 
variation 

[-] 

0.1% quantile 
of normal 

distribution 
[kN] 

I (close) 326.20 25.10 7.69 248.63 

II (open) 272.00 16.84 6.19 219.98 

III (open) 270.95 16.94 6.25 218.59 

IV (open) 271.94 17.24 6.34 218.66 

V (open) 271.07 17.14 6.32 218.10 

 

The design value of load carrying capacity of the beam with close cross-section (cross-section 
I) is – in compliance with EUROCODE 3 – 262.29 kN. EUROCODE 3 does not indicate the design 
load carrying capacity of beams with open cross-sections (cross-sections II, III, IV, V). 

 

 5 CONCLUSION 
This paper has presented the histograms and a table of load carrying capacities of beams with 

initial spatial axial curvature.  
The beams with open cross-section have similar mean values and standard deviations of load 

carrying capacity. Their design load carrying capacity is not given by the standard EUROCODE 3 
explicitely. Nevertheless, if the buckling curve b is used, the value of load carrying capacity will be 
235 kN. This value is higher than all 0.1% quantiles of normal distribution by means of which the 
values of load carrying capacity of beams with open cross-section were approximated.  



179 

The design value of load carrying capacity of beams with close cross-section according to 
EUROCODE 3 is 262.29 kN. This value is also higher than 0.1% quantile of normal distribution. The 
design in compliance with EUROCODE 3 can be dangerous. However, it must be verified by other 
reliability studies according to EN1990. 

On the contrary to beams with open cross-sections (cross-sections II, III, IV, V), the beams 
with close cross-section (cross-section I) have higher mean value and standard deviation of load 
carrying capacity, although they have quite the same area and second moment of area about both axes 
and the same realizations of initial axial curvature. Mean values and standard deviations of load 
carrying capacity of beams with open cross-sections are very close to each other. Therefore it can be 
said that the position of the incision has not any effect on the resulting load carrying capacity. The 
decrease of their load carrying capacity is caused by the decrease of torsion stiffness above all. The 
beams with open cross-sections are additionally stressed by twisting moment and by the bimoment. 
Warping of the beam with open cross-section represents the main cause of decreasing its load 
carrying capacity. The beam undergoes warping namely due to the fact that its axis is curved by 
random curvature of general shape. Let us remark that this problem would not be described 
satisfactorily in detail for a beam with imperfection having the shape of one half-vawe of the sine 
function. Random fields are indispensable for the study of this phenomenon. The study of the 
problems will be continued further on. 
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