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Abstract. This paper presents the use of a finite element 
method (FEM) to analyze the negative shear lag effect on 
prestressed continuous double T beam. However, the 
numerical method can be applied to i) any cross-section, 
ii). the most common types of supports, such as fixed, 
pinned, roller, iii) and any applied load, concentrated, or 
distributed passed through the shear center of the cross-
section. The characteristics of the cross-section are firstly 
derived from 2D FEM, which uses a 9-node isoparametric 
element. Then, a 1D FEM, which uses a linear 
isoparametric element, is developed to compute the 
deflection, rotation angle, bending warping parameter, 
and stress resultants. Finally, the stress field is obtained 
from the local analysis on the 2D-cross section. A 
MATLAB program is executed to validate the numerical 
method. 
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1. Introduction 

According to the elementary beam theory, when the beam 
element is under load, the longitudinal normal stresses are 
assumed to be proportional to the distance from the neutral 
axis. However, in practice, these stresses are nonuniformly 
distributed over the width of the cross-section. This 
phenomenon is called shear lag. 

 Many authors have researched the shear lag 
phenomenon. Reissner, E. [1] established a displacement 
field along the axis of the beam, taking into account the 
effect of shear lag, which is expressed by a parabolic 
function, and used the principle of minimum potential 
energy to obtain the flange stress at the cross-section. 

During the past several years, many authors [2-15] based 
on thinned wall beam theory [16] improved a spanwise 
displacement [1], which considers the warping of flanges, 
to analyze shear lag due to flexure. Most studies focus on 
concentrated and uniformly distributed loads. The effect of 
prestressed load on shear lag has only been performed in a 
few studies [7, 11]. Chang, S. T. [7] derived an analytical 
method from [2] and [1] to calculate the shear lag of simply 
supported prestressed concrete. Zhou, S. J. [11] proposed 
a new FEM to analyze the shear lag in prestressed concrete 
box girders. 

 The practical design of the beam structure requires 
faster and easier parameter adjustment than the 3D 
modelling using shell or solid. Some authors [17-21] have 
transformed the 3D analysis of the shear lag phenomenon 
into separated 2D cross-sectional and 1D modelling. El 
Fatmi, R. [17, 18] derived the nonuniform shear and 
torsional warping of arbitrary homogeneous cross-section 
from the Saint Venant beam problem extension. Le 
Corvec, V. and Filippou, F. C. [19] defined the axial 
displacement due to warping by interpolation a warping 
degrees of freedom number on the cross-section to 
establish FEM formulation for shear torsional warping in 
the elastic and elastoplastic analysis of beams. Ferradi, 
M.K. et al. [20] obtained FEM that accurately captures 
normal stress due to restrained warping by reproducing 
cross-sectional warping as a linear combination of warping 
modes. Dikaros, I. C. and Sapountzakis, E. J. [21] 
proposed a theory to determine nonuniform warping due 
to flexure of composite beam with arbitrary cross-section 
using the Boundary Element Method (BEM). 

 The purpose of this paper is to investigate the negative 
shear lag effect due to prestressing load in continuous 
double T beam by establishing a numerical method using 
FEM, based on displacement and strain fields derived from 
Dikaros, I. C. and Sapountzakis, E. J. [21]. A 2D FEM 
based on the Galerkin approach is obtained from 
computing the warping function of the corresponding 
elliptic differential equations. The other kinematical 
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variables of the beam are calculated from the principle of 
virtual work by developing a 1D FEM. 

2. Formulation the problem 

Let us consider a prismatic beam with arbitrary cross-
section, constant along the length L, with modulus of 
elasticity E, and shear modulus G. The longitudinal axis is 
the x-axis, and the cross-sections lie in the y–z plane. The 
coordinate system is Sxyz through the shear center of the 
cross-section S. CXYZ is the parallel system with Sxyz 
through the center of gravity C. 

 

 
 

Fig. 1: Cross-section of a prismatic beam. 

 The multiply connected domain Ω  is bounded by n 
curves, 1,Γ  2 ,Γ ..., 1 ,n−Γ  ,nΓ  as Fig. 1. Tangent vector t 
with associate coordinate s and normal vector n set up the 
right-handed system. The beam is exposed to the arbitrary 
distributed or concentrated loads, transverse loading pz(x) 
along the z-direction, bending moment mY(x), and warping 
moment ( )P

CY
m xϕ  along with the Y direction. The cross-

section is assumed with no distortion. 

 The geometric constants of the beam are defined as 
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where A is the area of cross-section, ,YYI  ZZI  are the 
second moments of area with respect to Z, Y-axis, 
respectively, P P

CY CY
Iϕ ϕ  is the warping constant. 

P
CYϕ  defines the shear warping function with respect to 

center of gravity C, which is obtained from 

,P P
CY CY Zϕ φ= −      (2) 

where ( , )P
CY y zf  is determined from the elliptical 

differential equations 
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where P
Z ZA k A=  is defined as the primary shear area, kZ 

is the shear correction factor obtained from the definition 
given in [22] 

 In addition, the evaluated warping function P
CYφ  from 

(3) contains an integration cs, which can be obtained from 
Gruttmann, F. [23] 

1 .s P
CYc dA

A
φ

Ω
= −      (4) 

The displacement field is expressed as [21] 
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where , ,u v w  are the total displacements corresponding 
with the axis x, y, z  

, ( , , )P Su u x y z  are the primary and secondary axial 
displacement, respectively, 

( )Y xθ  is the angle of rotation of the section about the Y 
axis, 

Yη  is the bending warping parameter. 

 The stress field obtained from the theory of elasticity 
as [21] 
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where ,
P
Z x Ywγ θ= + , ,

S
Z Y x Ywγ η θ= − −  are defined as 

the primary and secondary shear strains, respectively. It is 
emphasized that the stress component xxσ  is composed of 

i) the classic normal stress, P
xxσ , determined from the 

engineering beam theory and ii) the warping normal stress, 
S
xxσ , caused by warping of the cross-section is the primary 

reason for the shear lag phenomenon. 
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 The bending moment, the warping moment, the 
primary shear force, the secondary shear force are denoted 

,YM  ,P
CY

Mϕ  ,P
zQ  S

zQ , respectively obtained as [21] 
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3. FEM procedures 

3.1. Deflection wx, rotation angle 𝜽𝒀 and 
bending warping parameter 𝜼𝒀 

The principle of virtual work ignoring volumetric forces is 
used to establish the stiffness matrix of the 1D beam 
element. Assume the beam element includes two end 
nodes, 1, 2, The symbol (.)δ  denotes the virtual 
quantities. The internal virtual work is 

( ) ,i xx xx xy xy xz xzV
W dVσ δε τ δγ τ δγ= + +   (8) 

where V is the volume of a prismatic beam. 

 Substitution the Eq. (6) and Eq. (7) to Eq. (8), the 
internal virtual work can be rewritten as 

( )( ) ( ), , , ,0 0
P P
CY CY

L L
i YY Y x Y x Y x Y xW EI dx EI dxϕ ϕδ θ θ δ η η= + + 

( )( )
0

LP P P
Z Z ZGA dxδ γ γ + ( )( )

0
( )

LP S S
Z Z ZG A A dxδ γ γ− 

       (9) 

 The external virtual work is 
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where tx, ty, tz are the components of traction vector applied 
on the lateral surface of the beam which is related to the 
end nodes- external loads as [21] 
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 Using the expression Eq. (11), the Eq. (10) can be 
represented as 
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 To derive the element stiffness matrix, the variables wx, 𝜃௒, and 𝜂௒ need to be interpolated within each element. wx, 𝜃௒ and 𝜂௒ are independent variables. As a result, any kind 
of 𝐻଴ shape function can be used for the present beam. We 
use 1D linear isoparametric shape function for both 
variables [24, 25]. That is, 
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where 1,xw  2 ,xw  1,Yθ  2 ,Yθ  Y1,η  Y2η  are the nodal 
displacements, rotation angle, bending warping parameter 
at the beam end nodes (1) and (2), respectively 
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N ξ= −  ( )2
1 1 .
2

N ξ= +    (14) 

 The corresponding element nodal degrees of freedom 
is 1 1 Y1 2 2 Y2{ , , , , , } .T

x Y x Yw wθ η θ η=d    (15) 

 Substituting Eq. (13-14) to Eq. (9) and Eq. (12) leads 
to the element stiffness matrix and element force vector as 
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 ,iw iξ  are the weights and the coordinate of integration 
points of the Gaussian integration technique. In the present 
study, to avoid the shear locking, we use one-point Gauss 
quadrature ( 2,iw = 0)iξ = . 

 Assembling the element stiffness matrix and load 
vectors in the system matrix equation given below 

. .=K d F      (27) 

3.2. Warping function, P
CYφ , P

CYϕ  

Using Galerkin’s method, with test function 1( )Hη ∈ Ω  
and applying the Gauss-Green theorem, the governing 
equation (3) is transformed to weak form as 
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The warping function value, P
CYφ , in Eq. (28) is 

approximated by the FEM, which is presented in [22]. 
Finally, the value P

CYϕ  is calculated from Eq. (2). 

4. Validation example 

In this section, a computer code is developed in the 
MATLAB R2015 based on the formulations described in 
the previous sections. A prestressed continuous beam with 
a double T cross-section was analyzed using this code. The 
beam's geometrical characteristics, the boundary and 
loading conditions are shown in Fig. 2. 

 Points B1, B2, and B3, are on the upper plate and have 
the y coordinates -1.55 m, -0.825 m, and 0, respectively. 
The straight tendons are positioned uniformly at the center 
of the slab. On the plan, tendons are arranged at the internal 
support with a total length of 2.8 m. Assume there are six 
tendons, each of which is stressed with a force of 140 kN. 
Modulus of elasticity E= 30 x 103 MPa, and the Poisson 
ratio 𝜈 =  0.2. 

 

 
Fig. 2: Continuous beam, the load, and the geometry of the cross-section, units [mm]. 
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Fig. 3: The distribution of the classic normal stress in cross-section at x=14 m, units [kPa]. 

 
Fig. 4: The distribution of the warping normal stress in cross-section at x=14 m, units [kPa]. 

 
Fig. 5: The distribution of the total normal stress 𝜎௫௫ in cross-section at x=14 m, units [kPa]. 

 This example was analyzed by employing 840 axial 
elements and 126 elements in the cross-section. The 
geometric constant of the cross-section determined from 
the present study are as A= 0.287 m2, Zk = 0.2606, YYI =  
0.00977 m4, P P

CY CY
Iϕ ϕ = 0.00248 m4. 

 The prestressed load applied to the beam is 
transformed into two equivalent loads, Px= 840 kN, and 
My= 115.9 kNm, shown in Fig 2. ETABS 2018 [26] is used 
to simulate 3D model included beam, shell, and tendon 
elements. The shell and beam elements are divided into 
9856, 700 elements, respectively. 

 Fig. 3, Fig. 4, Fig.5 show the contour plot of the classic 
stress, the warping normal stress, and the total normal 
stress 𝜎௫௫ on the cross-section predicted by the present 
study at the positions x= 14m, respectively. In Fig. 6, the 
variation of the total normal stress 𝜎௫௫ along the width of 
the upper flange of the cross-section at the position x= 14 
m is shown and compared between the result from i) 
Engineering beam theory, ii) 3D simulation ETABS 2018. 

 In Table 1, the normal stress xxσ  in the points B1, B2, 
and B3 predicted by the present study are given and 
compared with the results from 3D simulation. From the 
above Figures and Tables, the influence of the shear lag 
phenomenon is apparent, and the present study's accuracy 

can be verified. 

 
Fig. 6: The variation of the total normal stress 𝜎௫௫ along the width in 

the upper flange at internal support. 

Tab.1: Comparison of the normal stress 𝜎௫௫ [MPa] at the points B1, B2, 
B3 

Methods Point B1 Point B2 Point B3 

Present study 3.9924 3.9487 4.0066 

ETABS 2018 [26] 3.96 3.93 4.025 

Error (%) 0.818 0.475 0.457 
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5. Conclusions 

In this paper, FEM is developed to analyze the negative 
shear lag effect due to prestressing in continuous double T 
beam. However, the numerical method can be used for 
arbitrary cross-sections with most boundary conditions 
and load types. A three-span continuous beam subjected to 
the prestressing load at the internal support was analyzed 
and compared with the results from 3D simulation 
software. It was observed that the present study could 
predict the negative shear lag phenomenon accurately due 
to prestressing load. 
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