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Abstract. This paper presents the use of a finite element 
method (FEM) to analyze nonuniform torsion with an 
arbitrary cross-section with homogeneous elastic material 
without shear deformation effect. Beams are constrained 
by the most common types of supports, such as fixed, 
pinned, and roller, and are subjected to any applied 
torsional load, concentrated, and distributed. The 
presented FEM transforms the 3D analysis of nonuniform 
torsion beams into separated 2D cross-sectional and 1D 
modeling. The geometric constants of the cross-section are 
firstly derived from 2D FEM, which uses a 9-node 
isoparametric element. Then, a 1D FEM, which uses the 
Hermitian shape function, is developed for computing the 
twist angle, the derivative of twist angle, and stress 
resultants. Finally, the stress field is obtained from the 
local analysis on the 2D-cross section. A MATLAB 
program is executed to validate the numerical method 
through examples. The validation examples have proven 
the reliability of the author's numerical method for 
analyzing problems defined above. 
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1. Introduction 

In engineering practice, we often encounter beam 
structures loaded in torsion. When the warping of a 
member's cross-section is not restrained, the stress field of 
a prismatic beam with homogeneous isotropic material can 
be derived from the Saint-Venant theory strictly [1-4]. In 
practice, because i) boundary conditions are imposed, ii) 
geometrical characteristics of the section, the warping of 
beam's cross-section is restrained, which leads to 
additional normal and shear stresses, which the Saint 

Venant theory does not take into account. Vlasov [5] was 
the first to formulate the problem of nonuniform torsion. 
Benscoter [6] improved Vlasov's theory, which neglects 
the shear deformation effect, leading to errors with closed 
cross-sections [7]. 

 Many authors established FEM to consider nonuniform 
torsion taking into account the shear deformation effect [7-
14]. However, the above research [7-14] used the 
approximations of Thin Tube Theory [5] to determine the 
bar's geometric constants, restricting the accuracy and 
applicability of the formulations. El Fatmi [15,16] 
proposed a beam theory with a nonuniform warping, 
including the effects of torsion and shear forces for 
arbitrary cross-sections made of homogeneous isotropic 
elastic material. Mokos and Sapountzakis [17] presented a 
nonuniform torsion theory considering the shear 
deformation effect for general cross-sections implemented 
by Boundary Element Method. The purpose of this paper 
is to establish a numerical method using FEM to solve the 
nonuniform torsion problem without the shear deformation 
effect of the prismatic beam with arbitrary cross-section 
unchanged throughout the length with homogeneous 
isotropic elastic material, based on displacement and strain 
fields derived from Sapountzakis, EJ et al. [17]. This paper 
is a preliminary research step for future research, which 
considers the shear deformation effect in nonuniform 
torsion. 

2. A brief introduction of the 
theoretical formulas for 
nonuniform torsion 

Let us consider a prismatic beam with arbitrary cross-
section, constant along the length L with the modulus of 
elasticity E, and shear modulus G. The longitudinal axis is 
the x-axis, and the cross-sections lie in the y–z plane. S is 
the shear center of the cross-section. The parallel system 

,Sz z z= +  Sy y y= +  intersects at O, the arbitrary point. 
CXYZ is the parallel system with Sxyz through the center 
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of gravity C. 

The multiply connected domain Ω  is bounded by n 
curves, 1,Γ  2 ,Γ ..., 1,n−Γ  ,nΓ  as Fig. 1. Tangent vector t 
with associate coordinate s and normal vector n set up the 
right-handed system. The beam is enforced to the arbitrary 
loads, distributed torque mt(x), concentrated torque Mti(x), 
concentrated warping moment Mwi(x). The cross-section is 
assumed with no distortion. 

 

Fig. 1: Cross-section of the prismatic beam 

 The displacement field is expressed as [17] 

( , , )u x y z = ' ( , ) ( , ),P S
x S Sy z y zθ φ φ+    (1) 

( , ) ( ),xv x z z xθ= −     (2) 

( , ) ( ),xw x y y xθ=     (3)  

where u, v, w are the axial and transverse displacements of 
the beam with respect to Sxyz 

xθ  is the angle of twist 

( , )P
S y zφ  is the primary warping function with respect to 

shear center S derived from 
2 0 in

on .

P
S

P P
S S

y z y z nn n zn yn
y z

φ

φ φ

∇ = Ω

∂ ∂
+ = − Γ

∂ ∂

  (4) 

 Moreover, the restrained warping function can be 
computed as follows by using the transformation of 
coordinates [18] 

1( , ) ( , ) ( , ) .P P P
S O S S Oy z y z y Z z Y y z dA

A
φ φ φ

Ω
= + − −   (5) 

where ( , )P
O y zφ  is the warping function with respect to 𝑂𝑦ത𝑧̅ system coordinates, A is the area of the cross-section  

S
Sφ  is the secondary warping function with respect to the 

shear center S, given as 
'''

2 ( ) in

0 on ,
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S S

S S
S S

y z n

E x
G

n n
y z

θφ φ

φ φ

∇ = − Ω

∂ ∂
+ = Γ

∂ ∂

   (6) 

 The stress fields obtained from the theory of elasticity 
as [17] 

" ( ) ( , ),P
xx x SE x y zσ θ φ=     (7) 

xyτ = ' ( )

P
xy

P
S

xG x z
y

τ

φθ
 ∂

− +  ∂ 1 4 44 2 4 4 43
,

S
xy

S
SG
y

τ

φ∂
∂1 2 3

  (8) 

xzτ = ' ( )

P
xz

P
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xG x z
z

τ

φθ
 ∂

+ +  ∂ 1 4 44 2 4 4 43
,

S
xz

S
SG
z

τ

φ∂
∂1 2 3

  (9) 

 In addition, the shear stress in (8), (9) can be seen as 
composed of two parts: primary shear stress and secondary 
shear stress. 

 The warping moment, the total twisting moment, the 
primary twisting moment, the secondary twisting moment 
are denoted by ,wM  ,tM  ,P

tM S
tM  obtained as [17] 

wM = P
xx S dσ φ

Ω
− Ω = '' ,S xEC θ−    (10) 

' ,

P P
P P PS S
t xy xz

t x

M z y d
y z

GI

φ φτ τ

θ

Ω

    ∂ ∂
= − + + Ω       ∂ ∂     

=

  (11) 

S
tM =

P P
S SS S
xy xzy z

φ φτ τ
Ω

 ∂ ∂
− − =  ∂ ∂ 

 ''' ( ),SEC xθ−  (12) 

,P S
t t tM M M= +     (13) 

where tI  is the torsional constant, determined as 

tI = 2 2 ,
P P
S Sy z y z d
z y

φ φ
Ω

 ∂ ∂
+ + − Ω  ∂ ∂ 

   (14) 

SC  are the warping constant determined by 

( )2
.P

S SC dφ
Ω

= Ω     (15) 

 The relation between the stress resultant, total twist 
moment Mt, and the distributed torque mt(x) is expressed 
as [17] 

( ).t
t

M
m x

x
∂

= −
∂

     (16) 

 After some algebra, the equilibrium equation for the 
nonuniform torsion problem of a homogeneous isotropic 
bar without shear deformation effect is expressed as 

4 2

4 2 .x x
S t t

d d
EC GI m

dx dx
θ θ

− =    (17) 
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3. FEM procedures 

3.1. Angle twist, xθ  

Applying Galerkin’s method, one of the methods of 
weighted residual, the governing equation Eq. (17) is 
transformed to weak form as 

4 2

4 20
0,

L x x
S t t

d d
I EC GI m dx

dx dx
θ θ η

 
= − − =  

 
  (18) 

where η  is the test function. 

 The beam is discretized into a number of finite 
elements. After some manipulation, the weak formulation 
of Eq. (18) can be expressed as 

2 2

2 2
1 e e

n
x x

S tL L
i

d dd dI EC dx GI
dx dxdx dx

θ θη η

=


= + −


    

0
0,

e

L
x

t t t wL

d d dm dx GI M M
dx dx dx
θ η ηη η  + − + − =     (19) 

where  

Le is an beam element domain 

n is the number of elements for the beam. 

 The Hermitian polynomial interpolation function, 
which achieves the correct solution of the problem with 
refining mesh, proves more flexible than the Hyperbolic 
interpolation function, which gives the most accurate 
results with the most analytical solution [19]. We choose 
cubic functions for the spatial interpolation of the twist 
angle, xθ , in terms of nodal variables. To this end, we 
consider an element that has two nodes, one at each end. 
The twist angle can be expressed as 

1 2
1 1 2 3 2 4( ) ( ) ( ) ( ) ,x x

x x x
d d

H x H x H x H x
dx dx
θ θθ θ θ= + + +

       (20) 

where 
2 3 2 3

1 22 3 3

2 3 2 3

3 42 3 2 3

3 2 2( ) 1 , ( ) ,

3 2( ) , ( ) ,

x x x xH x H x x
ll l l

x x x xH x H x
l l l l

= − + = − +

= − = − +
  (21) 

1 2
1 2, , ,x x

x x
d d
dx dx
θ θθ θ  are the nodal degrees of freedom. 

 Inserting the Eq. (20), Eq. (21) to Eq. (19) results in the 
stiffness matrix of the beam element 

1 2 ,e e= +K K K      (22) 

where  

1 1 10
,

eLe T
SEC dx= K B B     (23) 

2 2 20
,

eLe T
tGI dx= K B B     (24) 

where  
22 2 2
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 

B   (26) 

 The corresponding element nodal degrees of freedom 

is 1 2
1 2, , , .

T
x x

x x
d d
dx dx
θ θθ θ =  

 
ed    (27) 

 The third term in Eq.(19) results in the element force 
vector. For a generally distributed torque, we need to 
compute 

1

2

0 3

4

( ) ,
eL

t
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H
H

 
 
 =  
 
  

eF     (28) 

where eF  is the element force vector. 

 The last term in Eq. (19) is the boundary conditions of 
the total twisting moment and the warping moment at the 
two boundary points, x = 0 and x = L, of the beam. If these 
boundary conditions are known, the known total twisting 
moment and warping moment are included in the system 
force vector at the two boundary nodes. Otherwise, they 
remain unknown. However, the twist angle and the 
derivative of the twist angle are known as geometric for 
this case. Assembling the element stiffness matrix and 
vectors leads to the system matrix equation given below 

.=Kd F      (29) 

3.2. Warping function, ,P S
S Sφ φ  

Using Galerkin’s method, with test function 1( )Hη ∈ Ω  
and applying the Gauss-Green theorem, the governing 
equations Eq. (4), Eq. (6) are transformed to weak form as

P P
S S d
y y z z

φ φη η
Ω

 ∂ ∂∂ ∂+ Ω −  ∂ ∂ ∂ ∂ 
 ය (𝑛௬𝑧 − 𝑛௭𝑦)𝜂𝑑𝑠௰೙ = 0.
       (30) 

''' ( ) 0.
S S

PS S x
S

E x
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y y z z G
φ φ θη η φ η

Ω Ω

   ∂ ∂∂ ∂+ Ω − Ω =      ∂ ∂ ∂ ∂   
 
       (31) 

 The warping function values, P
Sφ , ,S

Sφ  in Eq. (30) and 
Eq. (31) are approximated by the FEM, which is presented 
in [3, 4]. 
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4. Validation examples 

In this section, the accuracy of the proposed FEM has been 
examined. A computer code is developed in the MATLAB 
R2015a software based on the formulations described in 
the previous sections. The obtained results are compared 
with the available works of the literature. 

4.1. Example 1 

As a first example, a thin-walled beam with an I-shaped 
cross-section shown in Fig. 2 is analyzed and compared 
with the results obtained by Tralli, A.M. [8] and Kim, N. I. 
et al. [11]. The I-section beam is clamped–free and the 
concentrated torsional moment Mx = 25 kNm is applied at 
its free end. The length of the beam is 5 m. The Young’s 
modulus and the Poisson’s ratio are E = 2 x 106 MPa and 𝜈 =   0.3 , respectively. The first test was analyzed using 
16 axial elements and 19 elements in the cross-section. The 
geometric constants of the cross-section determined from 
the present study are as follows 7 62.1559 10SC m−= × , 

6 42.8643 10tI m−= × . 

 
Fig. 2: A cantilever beam, the applied load, and the geometry of the I 

cross-section, units [mm]. 

 
Fig. 3: The variation of twist angle along the x-axis. 

In Table 1, the angle of twist at the free end predicted by 
the present study is given and compared with the results of 
other researchers. The variations of the angle of twist along 
the length of the thin-walled beam are shown in Fig. 3. It 
can be seen from Table 1 and Fig. 3 that the twist angle 
results obtained from the present study are in excellent 
agreement with other works. 
Tab.1: Comparison of the twist angle 𝜃௫ at the free end calculated by 

different methods 

Methods 𝜃௫  [𝑟𝑎𝑑] at x = L 

Present study 0.5171 

Tralli [8] 0.5183 

Kim et al [11] 0.5173 

Vlasov [11] 0.5167 

 

 
Fig. 4: Distribution of the axial stress 𝜎௫௫ in 2D cross-section at fix-end, 

unit MPa, 

 
Fig. 5: Maximum of normal stress 𝜎௫௫ along the axis x of the beam. 

 Fig. 4 shows the contour plot of the axial stress 𝜎௫௫ at 
the clamped end of the I-section beam. Fig. 5 depicts the 
variation along the axis x of the normal stress 𝜎௫௫. Fig. 6 
and Fig. 7 present the variation along the axis x of the 
warping moment and the torsional moments, respectively. 
It is observed from Fig. 4 that the variations of the axial 
stress are symmetric to the area center of the cross-section. 
In contrast to the flanges, no significant axial stress 
appears at the web of the I-section beam. The maximum 
value of 𝜎௫௫ = 515.911 MPa occurs at the corners of the 
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flanges. In Fig. 5, the variations of the maximum axial 
stress 𝜎௫௫ at the fixed-end of the cross-section along the 
length of the beam are shown and compared to the ones 
obtained from [8, 11]. It can be seen that the axial stress 
predicted by the present study is in good agreement with 
the results of Tralli, A. M. [8]. 

 
Fig. 6:  The variation of warping moment Mw along the axis x of the 

beam. 

 
Fig. 7: The variation of torsional moments along the axis x of the beam. 

4.2. Example 2 

A cantilevered thin-walled beam with a channel cross-
section depicted in Fig.8 is analyzed in this section. The 
depth, width, and thickness of the cross-section are h = 
0.833 m, b = 0.917 m, t = 1/6 m, respectively. The length 
of the beam is L = 4 m and, it is made of a material with 
the modulus of elasticity E = 2 x 105 MPa and the shear 
modulus G = 0.77 x 105 MPa. The considered thin-walled 
beam is subjected to uniformly distributed twisting 
moment equal to mx = 4.07 x 103 kNm/m. The second 
example was analyzed using in the present study by 
employing 80 axial elements and 64 elements in the cross-
section. The geometric constants of the cross-section 
determined from the present study are as follows 

60.0059SC m= , 40.00407889tI m= . 

 
Fig. 8: Cantilever beam, the applied load, and the geometry of the 

channel cross-section, units [mm]. 

 Shakourzadeh, H. et al. [7] used FEM based on 
Benscoter's model to solve this problem and compared it 
with the results obtained from Vlasov's theory, which 
neglects the shear deformation effect. Meanwhile, 
Sapountzakis, E. J. et al. [20] used Analog Equation 
Method (AEM) and AEM with isogeometric analysis with 
3 B-spline types: i) Quadratic B-spline, ii) Cubic B-spline), 
iii) Quadratic B-spline to investigate this problem. 

 
Fig. 9: The variation of twist angle along the x-axis. 

 
Fig. 10: The variation of derivative of the twist angle along the x-axis. 
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 Fig. 9 and Fig.10 show the variation of the angle of 
twist and the derivative of twist angle along the x-axis, 
respectively. The value of the angle of twist and the 
derivative of twist angle at the free end, and the warping 
moment at the fixed end are presented in Table 2 and 
compared with the ones obtained from Shakourzadeh, H. 
et al [7], Sapountzakis, E. J. et al. [20]. 

 
Fig. 11: The variation of warping moment along the x-axis. 

 
Fig. 12: The variation of the torsional moment along the x-axis. 

Tab.2: Comparison of the twist angle, the derivative of twist angle, and 
warping moment between the methods 

Methods 𝜃௫ [rad] 
at x = L 

𝜃௫ᇱ  
[rad/m] 
at x = L 

Warping moment 
Mw [N.m2] at x = 0 

Present study -0.0429 -0.0114 -19.083 x 106 

Saint- Venant model 
[7] 

-0.103 - - 

Vlasov model [7] -0.045 -0.012 -18.33 x 106 

FEM-Benscoter model 
[7] 

-0.045 -0.011 -18.17 x 106 

AEM (50NP) [20] -0.050 -0.009 -16.75 x 106 

AEM(Quadratic B-
spline) [20] 

-0.039 -0.006 -13.48 x 106 

AEM(Cubic B-spline) 
[20] 

-0.061 -0.013 -18.29 x 106 

AEM(Quaratic B-
spline) [20] 

-0.046 -0.008 -15.5 x 106 

 Fig. 11 and Fig.12 depict the variation of the warping 
moment and the torsional moments along the axis, 

respectively. It can be seen from Table 2 that the twist 
angle analyzed by the present study is in good agreement 
with the results of Vlasov model [7], FEM-Benscoter 
model [7], and AEM(Cubic B-spline) [20]. 

 The distribution of the axial stress 𝜎௫௫ and shear stress 𝜏௫௬ inside the channel cross-section at the position x = 0.5 
m is shown in Fig. 13. The maximum normal stress 𝜎௫௫ = 
657.865 MPa occurs on the tip of the flange. As expected, 
the distribution of the shear stress 𝜏௫௬, with the maximum 
value 205.981 MPa, decreases from the outer flange edge 
to the inner edge [21]. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 13: The normal stress 𝜎௫௫ and b) the shear stress 𝜏௫௬ b) the shear 
stress 𝜏௫௭ at x = 0.5 m from the fixed-end, units [MPa]. 

5. Conclusion 

In this paper, a finite element method is developed to solve 
nonuniform torsion without the shear deformation effect of 
the prismatic beam with an arbitrary cross-section with 
homogeneous isotropic material. Two examples were 
performed for validating the accuracy of the present study. 
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The comparison of the results from the present study with 
the corresponding results in the literature shows that the 
present study can predict the responses of the non-uniform 
torsion with arbitrary cross-section without shear 
deformation effect accurately. Linear analysis of 
nonuniform torsion considering shear deformation would 
be one of the future research topics. 
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