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Abstract. The paper describes a new approach to 
measuring the box-counting fractal dimension of surfaces 
based on making cuts and using the walking divider 
method with an improvement. The method is applied on 
a surface created by the fracture of an artificial composite. 
It is usable for accurate estimation of fractal dimension of 
flatter surfaces for which it is necessary to measure with 
small deviation. It also allows the discovery of the 
dimension distribution along the surface. 
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1. Introduction 

A fractal dimension of an object is a ratio describing how 
some geometric measure depends on a scale by which the 
object is measured. Fractal dimension, also described by 
its inventor as similarity exponent [1], plays an essential 
role for generic objects – fractals – exhibiting so-called 
self-similarity. Self-similarity of an object means that 
a pattern on the (ideal) object is present on all geometrical 
scales. Especially fractal functions have fascinating and 
long mathematical history directly connected with great 
and innovative mathematicians, namely Bernard Bolzano 
(~1831, Bolzano’s continuous and non-differentiable 
function), Georg Cantor (1874, Cantor set) and Karl 
Weierstrass (1872, Weierstrass function). The term fractal, 
systematic study, and establishment of fractal geometry, 
including its application to ideal and natural objects, 
originates in the work of Benoit Mandelbrot [1, 2]. Note 
that Mandelbrot cited the discovery of Lewis Richardson 
during measuring of length of a coastline, see [1], where 
the fractal (originally fractional) dimension and method of 
its measuring were defined. Term fractal dimension 

currently represents many fractal dimensions with 
different definitions and uses in many scientific disciplines 
[3, 4, 5, 6, 7]. Also, methods for measuring those 
dimensions and their accuracy differ significantly. 

 Real-world fractals show statistical self-similarity. 
Objects can be typically so-called multifractals due to an 
inherent dependency of some object property on a scale 
which causes dependency of fractal dimension on the 
scale. See [8] for references about methods for accurate 
handling of multifractals.  

 It becomes apparent that it is easy to find an object or 
process which has or produces some form of such apparent 
irregularity on particular scales. Ideal simple geometric 
objects with differentiable surfaces are not as common as 
we expected or believe. Let us mention that our (human) 
perception system tends to simplify the shape of all objects 
available for perception. Our brain represents/models 
observed objects in some ideal form, e.g. [9]. 

 The surfaces of natural and artificial materials created 
by fracture are considered fractal objects. A typical and 
massively used artificial material in civil engineering is 
a cement composite, commonly verified in fracture tests to 
determine fracture properties. These properties are then 
used to create material models for numerical calculations 
of the expected response of an engineering structure made 
of such material. The measurement of the fractal 
dimension of the fracture surfaces created in these tests can 
be considered independent and can help to understand the 
fracture process. Many authors deal with the 
characterization of fracture surfaces of cement composites 
from the point of view of fractal dimension determination 
and its correlation to other materials parameters, e.g. [10, 
11, 12, 13, 14, 15]. 

 Unfortunately, the fracture surface of cement concrete 
is typically flatter, which means that the surface can be 
reliably defined as a two-dimensional function, and the 
measured fractal dimension is often very close to the 
topological dimension, see [13, 15]. This fact makes the 
task highly sensitive and requires very accurate 
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measurement. The developed method described in this 
paper is used for measuring the box-counting dimension d, 
generally defined [7]: 

 𝑑 ൌ
୪୬ቀ
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ಿೌ

ቁ  

୪୬൬
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ಽ್
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,     (1) 

where Ni is a count of generalized boxes of size Li covering 
a measured object. The symbols a and b represent bounds 
of scales where the object is defined. We expect the object 
to be a fractal with a single box-counting dimension within 
these bounds. 
 Measuring the fractal dimension of a one-dimensional 
function made by a cut of a fracture surface is used because 
of the possibility of enhancing accuracy and discovering 
changes in fractal properties along with fracture evolution. 
The original Walking divider method [16, 17] designed to 
measure the box-counting dimension is significantly 
improved in this paper for accuracy and applied on 
a fracture surface. According to the definition above, both 
the classical and improved methods cover a one-
dimensional function h(x) by a number N of line segments 
of length L. 

2. Method 

As was mentioned, assume that we have a relatively flatter 
surface represented as a function z = f (x,y) on 
a rectangular area, see Fig. 1. We will measure fractal 
dimensions dx, dy of cuts of the function f made by planes 
perpendicular to axes x and y. For example, dimension 
dx(yc) of one-dimensional function z = fx(x) | y = yc 
obtained by cutting a plane perpendicular to axis y which 
intersects this axis at point y = yc. The improved walking 
divider method, described in detail below, will measure the 
fractal dimensions dx(yc) and dy(xc). After calculation of 
those dimensions we will calculate cross-dimension value 
𝑑௖ሺ𝑥௖ ,𝑦௖ሻ ൌ ൫𝑑௫ሺ𝑦௖ሻ ൅ 𝑑௬ሺ𝑥௖ሻ൯/2. 

 
Fig. 1: A surface defined on a rectangular area and its perpendicular 
cuts. 

2.1. Improved Walking divider 

For the sake of simplicity assume a continuous one-
dimensional function z = h(x) defined on interval (a,b). 
The new method will fully cover the function h by a sorted 
set P(h) of line polygonal functions pi, each with 

a particular count of segments Ni of length Li, Li > Li+1, 
where i =1, 2, …, n is an index of the polygon, see Fig. 2. 

 
Fig. 2: Function h is covered by polygonal function pi with segments of 
length Li on the interval (a,b). 

The algorithm searches for polygons with line segments of 
the spatial length Li and with vertices lying on the function 
h(x). Length Li is a constant for a particular polygon pi. 
Note that the polygon must cover the whole interval, which 
is the key improvement of the original method [16]. 
I.e. each polygon begins in point A=(a,h(a)) and ends in 
B=(b,h(b)). 

 The first polygon p0, not included in the set P(h), with 
the largest segment length L0 = Lmax, has only a single line 
segment connecting points A and B, see Fig. 3. It is based 
on the assumption that the function h is flat enough so that 
a polygon with more segments with the same or a larger 
segment length L does not exist. The segment has 
the length L0, which is equal to the distance between the 
first and the last point of the measured function h: 

 𝐿଴ ൌ ඥሺℎሺ𝑏ሻ െ ℎሺ𝑎ሻሻଶ ൅ ሺ𝑏 െ 𝑎ሻଶ  ൎ 𝑏 െ 𝑎. (2) 

The second polygon p1, with segment length L1, can also 
be easily found. The length L1 is the distance between an 
intersection of a crossing line and the point A or B. The 
crossing line is perpendicular to the polygon p0 and going 
through its midpoint, see Fig. 3. In general, there can be 
more than a single polygon p1, but the solution will be 
unique, considering a flatter surface. 

 
Fig. 3: The first and the second polygon cover the function h. 

The middle vertex of the polygon p1 can be found in two 
ways. The first procedure creates intersection point D 
using a line through the center of p0 (marked in Fig. 3 as 
C) perpendicular to the polygon p0. The second procedure 
rotates function h, so the line segment p0 will be horizontal 
and search for value z* of rotated function h* at the 
transformed midpoint coordinate x*. The intersection point 
(x*, z*) is then transformed back. Note that the intersection 
point will be close to coordinate x = 0.5(b – a). In this case, 
the length L1 can be approximated by: 

 𝐿1 ൎ ටቀℎ ቀ𝑎 ൅
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Researchers [16, 17] recommended not to use polygon p0 
due to its influence on the estimated dimension, and this 
influence was numerically verified. The improved method 
does not include polygon p0 in the set P(h). Emphasize that 
the original method [16, 17] is designed to search for 
polygons in the opposite direction. 

 In contrast to Lmax, the smallest length Lmin can be 
unknown and must be determined if the function h is 
known only at discrete points and intermediate values are 
interpolated. The following relationship can approximate 
the lower boundary of Lmin: 

𝐿min ൒ 𝑠max, 𝐿min ൎ √2 max௞ሺ𝑥௞ାଵ െ 𝑥௞ሻ, (4) 

where smax is the largest spatial distance between 
neighboring points and k is the index in the sorted 
sequence of discrete points in which the function h is 
known. The constant √2 in the relationship (4) is based on 
the assumption that the function h is flat enough, which 
means that neighboring points of the discretized function 
h will not have a slope higher than 1. It is more reliable to 
use a higher value for this constant because of the 
calculation deviation caused by the measurement being too 
close to the discretization step. Note that work [16] uses 
a constant 0.5, which is typically too small and causes 
a bias in the dimension estimate. 

 The fractal dimension is measured as the slope of the 
linear approximation 𝑢෤  of the log-log plot of the 
dependency between the polygon segment count and the 
segment length. Define substitution for a clearer 
description: 

 𝑢௜ ൌ ln ቀ
௅భ
௅೔
ቁ ,  𝑣௜ ൌ lnሺ𝑁௜ሻ,   (5) 

in which {ui, vi | i = 1, 2, …, n} represent set of values of 
properties of all polygons from the set P(h) transformed 
for the plot. The approximation 𝑢෤ሺ𝑣ሻ is usually made by 
least squares method based on calculation of sum of 
squares of deviations: 

 𝐽ሺ𝑑, 𝑞, ሼ𝑢௜ ,𝑣௜ሽሻ ൌ ∑ ሺ𝑑𝑢௜ ൅ 𝑞 െ 𝑣௜ሻଶ,௡
௜ୀଵ   (6) 

where J is a least-square deviation function dependent on 
two approximation parameters d, q, and a set of values of 
polygon properties {ui,vi}. The value d is a slope of the 
linear approximation 𝑢෤ , the estimated fractal dimension, 
and q is a shift. The deviation is then minimized, which 
gives known relationships: 

𝑑 ൌ
௡∑ሺ௨೔௩೔ሻ ି ∑௨೔ ∑௩೔

∑௨೔మିሺ∑௨೔ሻమ
,  

       (7) 
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∑௨೔
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.  

Unfortunately, the set P(h) of all existing polygons has 
asymmetric distribution, similar to geometric sequence, 
due to more frequent polygons near the lower boundary 
Lmin and rare polygons near Lmax. The dimension estimate 
d is biased due to this irregular distribution. 

 Let us define a new approximation 𝑢෤௦ሺ𝑣ሻ of a new set 
Ps(h) made by sampling from the set P(h) to ensure 
approximate regularity of the polygon distribution in all 

scales in the log-log plot {ui,vi}. A new set {uj, vj} made by 
sampling from {ui, vi} can be created by searching 
polygons with a sampling interval of logarithmic length 𝑔, 
estimated as the difference between segment lengths L1 
and L2: 

 𝑔 ൌ ln ቀ
ଵ

௅మ
ቁ െ ln ቀ

ଵ
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where L2 is the segment length of the third existing 
polygon p2, which must be found numerically, e.g., by the 
modified bisection method. 

 As the first step of the numeric method, there is 
a logical assumption that polygon p2 can exist with N2 = 3. 
With this assumption, the following must apply: 

 𝐿ଵ ൒
௅బ
ଶ

, 𝐿ଶ ൒
ଶ

ଷ
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௅బ
ଷ
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Note that polygon p2 with N2 = 3 may not exist. If it does 
not exist, then continue the search for N2 = 4 and so on, 
with a generalized formula for polygon p2: 

  
௅మ
௅బ
൒

ଵ

ேమ
,  𝐿ଶ ൒

௅బ
ேమ

.    (10) 

With knowledge of the polygon p2 and the value of 
logarithmic distance 𝑔 we can have three fundamentally 
different approaches how to get the set Ps(h): 

a) find the set of all existing polygons P(h) and make 
Ps(h) using a sampling (brute force method), 

b) find polygons around 𝐿௦௝ ൌ 𝐿ଵ𝑒ି
ሺ௝ିଵሻ௚, j = 3,4,…,ns 

c) ditto around 𝑁௦௝ ൌ 𝑁ଵ𝑒
ሺ௝ିଵሻ௚, 

where ns is the number of polygons in the set Ps(h). Note 
that searching for polygons close to equidistantly 
distributed coordinates v is similar to the original 
procedure [16], using an exact geometric sequence to 
determine segment lengths L. However, polygons with 
those lengths do not cover the function exactly, which 
leads to biased estimation. 

 When the set Ps(h) has been found and parameters ds, 
qs of linear approximation 𝑢෤௦ሺ𝑣ሻ determined using 
relationship (7) adapted for Ps, the standard deviation of 
the dimension ds can be calculated using the known 
relationship: 

 𝜎ௗ௦ ൌ ඨ
ଵ

௡ೞିଶ

∑൫௩ೕିௗ௨ೕି௤ೞ൯
మ

∑ቀ௨ೕି
భ
೙
∑௨ೕቁ

మ
 
.   (11) 

Finally, we can write the fractal dimension in the form: 

 𝑑௦ േ 𝜎ௗ௦     (12) 

2.2. Area scan 

As described above, using the described method, we can 
calculate the cross-dimension function dc(xc,yc) for any 
continuous function f(x,y). The function dc(xc,yc) can be 
used to locate some fractal dimension disturbances, and 
the result can be further enriched and verified. It is possible 
to divide the area into subareas and measure cross-
dimension dc(xc,yc). We can expect better localization of 
disturbances in smaller areas, see Fig. 4, along with 
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some verification from results taken on larger areas. Note 
that when we have only discrete points of function f, the 
smaller areas, taken from the original discretization, will 
probably have higher standard deviations because of lower 
counts of known points. We suggest dividing the area into 
regular subareas of shapes close to a square to keep the 
unbiased dimension measurement in both directions. 

 
Fig. 4: Measurement of cross-dimension on subareas. 

3. Application 

The method described above was applied on a fracture 
surface originating by fracture caused by bending 
a notched concrete specimen, marked as W_100_L_1_A, 
loaded in the three-point bending test. For more details, see 
publication [18]. After the fracture test, the whole surface 
of one side of the ligament of the specimen of size 
approximately 98×49 mm was measured by a laser 
profilometer with sampling step 50 μm in both directions, 
which gives a grid of size 1960×989 points. The surface is 
plotted in Fig. 5 using color-coding. 

  
Fig. 5: The fracture surface of the ligament of specimen W_100_L_1_A 

In Fig. 5 we can see that the coordinate z of the scanned 
surface varies between 0 and 12 mm. Coordinates z are 
coded using colors. The values at the bottom part are 
continuously coded from black to red, magenta, and 
yellow (the black color is on mid-level). At the top part, 
from black to blue, green, and cyan. 

3.1. Fractal dimension 

For the presentation of improved walking divider method 
performance, the first top row from the grid was taken, see 
Fig. 6, and is available on the web [19]. In this row, the 
fractal dimension calculation using the described method 
was made, resulting in the value 1.0251 ± 0.0013. The 
corresponding graph of the polygons found shown in Fig. 
7. 

 

 

 

 

 

 

 

Fig. 6: The top row of the scanned grid (data are available at [19]). 

 

Fig. 7: Graph of the plotted polygons found (crosses) and their linear 
approximation (dotted line). 

Tab. 1: The table of the plotted 
polygons (displayed in 
Fig. 7) with the list of 
values of calculated 
search points Lsj, Nsj for 
the selected function. 

 

 

 

 

 

 

 

 

In Fig. 7 can be seen the accuracy of the result of 
measurement of all quantities such that there is no visible 
deviation from line approximation. Note that there are not 
enough polygons to keep exact equidistant distribution at 
some intervals. Described brute force variant was used to 
find all 547 exact polygons (until the bottom limit Lmin was 
reached) from which the set of points {Li,Ni} was selected. 
Furthermore, Tab. 1 also presents search values Lsi and Nsi 
calculated using the relationships described above. The list 
of all polygons is also available at [19]. 

j Lj Nj Lsj Nsj 

1 49.044 2 ditto ditto 

2 32.739 3 ditto ditto 

3 19.721 5 21.855 4 

4 14.080 7 14.589 7 

5 9.913 10 9.739 10 

6 6.672 15 6.501 15 

7 4.560 22 4.340 23 

8 2.928 35 2.897 34 

9 2.188 47 1.934 51 

10 1.476 71 1.291 76 

11 1.014 104 0.862 114 

12 0.686 156 0.575 171 

13 0.467 233 0.384 255 

14 0.318 346 0.256 383 

15 0.217 512 0.171 573 

16 0.147 762 0.114 859 

17 0.100 1117 0.076 1286 
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3.2. Cross-dimension and subareas 

Remind that calculating a fractal dimension distribution 
needs processing of every row and column of the grid. Two 
applications will be presented here on the scanned surface 
as a whole and the surface divided into 16×8 subareas for 
better spatial accuracy. 

 Whole surface scanning gave a minimal fractal 
dimension 1.0155 ± 0.0009, a maximal 1.051 ± 0.004, and 
the largest standard deviation 0.0041 measured on rows. 
On columns was found a minimal value 1.0243 ± 0.0017, 
a maximal 1.092 ± 0.006, and the largest standard 
deviation 0.013. Cross-dimension varies between 1.02 and 
1.07 with modus 1.0317, see Fig. 8 and Fig. 9. 

 On 16×8 subareas, cross-dimension varies between 
1.005 and 1.35 with modus 1.0326 (Fig. 8 and Fig. 10). 
The highest values form islands which are suspected of 
some deviations on the fracture surface. In Fig. 11 can be 
seen that those islands probably correspond with high 
values of magnitudes of gradients of the discretized 
fracture surface or with derivatives of those gradients. 
Those islands indicate the existence of localized different 
structures on the fracture surface. 

 Note that distributions of dimensions in Fig. 8 reflect 
the fact that localization of measurement will affect the 
variance of dimension values because of the nature of the 
calculation method. More precisely, the measurement has 
an averaging effect such that larger areas will probably 
have smaller variance, as seen in Fig. 8. 

 

 

Fig. 8: The probability distribution function of cross-dimension dc for 
both area measurements). 

 

 
Fig. 9: Distribution of cross-dimension dc measured on the whole 
surface. 

 
Fig. 10: Distribution of cross-dimension dc measured on 16×8 subareas. 

 
Fig. 11: The color-coded magnitudes of discretized surface gradients. 
Those numbers are defined only for the particular discretization of the 
surface. 

4. Conclusion 

This paper introduces a new approach to accurately 
measuring the fractal dimension of fracture surfaces, 
which are typically relatively flatter with an estimated 
fractal dimension close to the topological dimension. The 
approach was based on using one-dimensional functions 
produced by cuts of measured surfaces which can be used 
along with an improved walking divider method. For the 
particular surface obtained from the fracture test, it was 
shown that the fractal dimension of cuts did not overstep 
the value of approximately 1.1 except on areas 
recognizable as deviations and described as different 
structures on the fracture surface. It was presented that 
those deviations can be predicted by measuring gradients 
of the discretized fracture surface. Also, dimension 
distribution along the surface was observed thank this 
approach. 

 The notable result is that the modus of cross-dimension 
distribution is very similar for both area measurements, 
particularly value 1.0317 for measurement on the whole 
surface and 1.0326 for 16×8 subareas. Such similarity of 
modus was not expected, and its possible use will be 
verified for large sets of samples in the future. 

 The scanning procedure for obtaining the fracture 
surface has some adverse effects on the fractal dimension 
measurement, which will need further investigation. The 
first known effect is that the surface is scanned in one 
direction. This problem can be eliminated by scanning in 
both directions and making a merge. The second effect is 
that the scanning method is constrained to measure only 
flatter surfaces, as was defined in the paper, and this 
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constraint is also direction-dependent. 
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