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Abstract. The paper is dedicated to the assessment of the 
dynamic response of a block concrete foundation to 
dynamic effect of an external force. The basic dynamic 
characteristic of the system is analysed. The state of 
resonance and introduction of the resonance curves are 
assessed. Description of the possibilities of numerical 
solution of the foundation response to dynamic loading 
and analysis of the behaviour of the foundation under 
different conditions are presented. 
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1. Introduction 

Reinforced block concrete foundations are a common type 
of foundations for various equipment. The foundation is 
placed directly on the subsoil, or an insulating layer is 
inserted between the foundation and the subsoil. This layer 
can be made of a cork, a rubber, or spring insulators. The 
reason for its establishment can be different, for example, 
to increase the damping, to influence the natural frequency 
of the system or to reduce the transmission of vibrations to 
the surrounding environment. The analysis of the dynamic 
response of such foundations was analysed by various 
authors [1], [2], [3] and [4]. Beside the analytical methods, 
numerical methods are preferred nowadays [4], [5]. The 
paper assesses the dynamic response of the block 
foundation to the harmonically varying force generated by 
the hydraulic cylinder of the pulsator at different excitation 
frequencies.   

2. Parameters of the System 

The foundation is a reinforced concrete block placed on a 
cork slab. The dimensions of the foundation are a = 2.0 m,                           

b = 2.5 m, h = 1.6 m, the ground plane of the foundation  
A = a·b = 2.0·2.5 = 5.0 m2, the volume of the foundation  
V = A·h = 5.0·1.6 = 8.0 m3, bulk density ρ = 2 500 kg/m3, 
the mass of foundation mz = V· ρ = 8.0·2 500 = 20 000 kg. 
The subsoil compressibility module Kz = 3.0·108 N/m3. 
The elastic modulus of the cork slab Ek = 1.0·107 N/m2, the 
thickness of the cork slab hk = 0.2 m. The mass of the tested 
element ms = 4 000 kg. The damping angular frequency ωb 
= 12.566 371 rad/s. To solve the problem, the single degree 
of freedom (SDF) calculation model is chosen, Fig. 1. 

 
Fig. 1: SDF calculation model. 

In the first step, the basic dynamic characteristics, which 
define the dynamic individuality of the system, are 
calculated. The mass of the system  
m = ms + mz = 4 000 + 20 000 = 24 000 kg. 
The stiffness of the subsoil  
kz = Kz·A = 3.0·108·5.0 = 1.5·109 N/m. 
The stiffness of the cork slab  
kk = Ek·A/hk = 1.0·107·5.0/0.2 = 2.5·108 N/m. 
The stiffness of the whole system  
k = kk·kz/(kk+kz) = 2.5·108· 1.5·109/(2.5·108 +1.5·109)  = 
214 285 714.2857 N/m. 
The natural angular frequency of undamped vibration 
ω0 = (k/m) = (214 285 714.2857/24 000) = 94.491 rad/s.           
The angular frequency of damping ωb = 12.566 rad/s. 
The natural angular frequency of damped vibration 
ωd =  (ω0

2 - ωb
2) =  (94.4912 -  12.5662 ) = 93.651 rad/s.   

The angular resonance frequency 
ωR =( ω0

2- 2· ωb
2)=( 94.4912- 2·12.5662) = 92.804 rad/s. 

The frequency ωR corresponds to the motor revolutions in 
the value nR = 60·ωR/(2π) = 60·92.8/(2π) = 886.175 re/min. 

In the second step, the response of the foundation block 
on dynamic effect of the pulsating force is analysed. The 
hydraulic cylinder of the pulsator acts on the foundation 
with a harmonically varying force F(t) = F·sin(ω·t).  The 
amplitude of the exciting force F = 10 000 N. Static 
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deflection due to the amplitude of the exciting force  
vst = F/k = 10 000/214 285 714.2857 = 0.0466·10-3 m. 
Dynamic factor in resonance 
δR = ω0

2/(2·ωb·ωd) = 94.4912/(2·12.566·93.651) = 3.7934. 
Amplitude of steady-state forced vibration in resonance 
vre = vst· δR = 0.0466·10-3· 3.7934 = 0.177·10-3 m. 
The phase shift φR corresponding to ωR 
φR = arctg(-((ω0/ ωb)2-2)) = arctg(-((94.491/12.566)2-2)) 
= -1.4362 rad. 

The response of the system depends on the frequency 
ω of the exciting force F(t) [2]. Let us define three 
dimensionless quantities 

η = ω/ω0,  ηR = ωR/ω0 and  ξ = ωb/ω0.           (1) 
We can now express the dynamic factor δ depending on the 
two parameters η and ξ as follows 

δ = 1/((1- η2)2 + 4· η2· ξ 2).                     (2)    
It is valid for the phase shift angle φ 

φ = - 2·ξ·η/(1 - η2).                             (3) 
 The amplitude and phase resonance curves describe the 
influence of the frequency ω of the exciting force F(t) on 
the response of the system. The amplitude resonance curve 
is a graphic dependence of the dynamic factor δ on the 
quantity η, plotted for a specific value ξ, Fig. 2. The phase 
resonance curve is a graphic dependence of the phase shift 
angle φ on the quantity η, plotted for a specific value ξ, 
Fig. 3.  

 
Fig. 2: Amplitude resonance curve at ξ = 0.13299, ηR = 0.9821.  

 

 

Fig. 3: Phase resonance curve at ξ = 0.13299, ηR = 0.9821.  

3. Response in Time Domain 

The equation of motion describing the vibration of the 
computational model from Fig. 1 is obtained on the basis 
of d'Alember principle as a condition of equilibrium of 
forces acting on the mass m. If we mark the vertical 
deflection in time v(t) then we can write 

𝑣ሷሺ𝑡ሻ ൅ 2𝜔௕ ⋅ 𝑣ሶ ሺ𝑡ሻ ൅ 𝜔଴
ଶ ⋅ 𝑣ሺ𝑡ሻ ൌ

ி

௠
sinሺ𝜔 ⋅ 𝑡ሻ. (4) 

 The general solution of Equation (4) consists of a 
general solution of the equation without a right-hand side 
and a particular solution of the equation with a right-hand 
side  

 )()()( tvtvtv po  

              )]cos()sin([ tBtAe dodo
tb   

                           )cos()sin( tBtA   .               (5) 

The Equation (6) for the velocity is 
𝑣ሶሺ𝑡ሻ ൌ 𝑒ିఠ್⋅௧ ⋅ 𝜔ௗ ⋅ ሾ𝐴௢ ⋅ cosሺ𝜔ௗ ⋅ 𝑡ሻ െ 𝐵௢ ⋅ sinሺ𝜔ௗ ⋅ 𝑡ሻሿ 

൅𝜔 ⋅ ሾ𝐴 ⋅ cosሺ𝜔 ⋅ 𝑡ሻ െ 𝐵 ⋅ sinሺ𝜔 ⋅ 𝑡ሻሿ.          (6) 
The solution can also be written in the form 

)sin()sin()( 00    tvtvetv d
tb .    (7) 

The Equation (8) for the velocity 
              𝑣ሶሺ𝑡ሻ ൌ െ𝜔௕ ⋅ 𝑒ିఠ್⋅௧ ⋅ 𝑣଴ ⋅ sinሺ𝜔ௗ ⋅ 𝑡 ൅ 𝜑଴ሻ ൅ 

)cos()cos( 00     tvtve d
t

d
b .  (8) 

The constants A, B, v, φ are calculated from the relations 

]4)[(

)(
22222

0

22
0








bm

F
A ,               (9) 

,
]4)[(

2
22222

0 






b

b

m

F
B              (10) 

22 BAv  ,                           (11) 
)/(arctg AB .                         (12) 

 It is assumed that the foundation is initially at rest and 
then a harmonically variable force is applied. The initial 
conditions are as follows t = 0, v(t) = 0, v̇(t) = 0. 
Substituting the initial conditions into Equations (5) and 
(6) gives the relations for calculating the integration 
constants A0, B0 in the form 

B0 = - B ,                                  (13) 
A0 = - ω·A/ωd ,                             (14) 

22
0 00 BAv  ,                           (15) 

)/(arctg 000 AB .                       (16)  

 The response of the system in time depends on the 
angular frequency ω of the exciting force F(t). In the sub-
resonance area (ω < ωR, n < nR), dynamic deflections 
increase with increasing engine revolutions. The reason for 
this is that the time course of the excitation force F(t) and 
the component of the steady-state forced vibration vp(t) 
change in phase, i.e. they support each other, Fig. 4. In the 
over-resonance area (ω > ωR, n > nR), dynamic deflections 
decrease with increasing engine revolutions. They can 
even reach a lower value than the static deflection. The 
reason for this is that the time course of the excitation force 
F(t) and the component of the steady-state forced 
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oscillation vp(t) change in opposite phase, i.e. they disturb 
each other, Fig. 5. 

 
Fig. 4: F(t) and vp(i) at ω = 71.209 rad/s, sub-resonance area. 

 

Fig. 5: F(t) and vp(i) at ω = 163.363 rad/s, over-resonance area. 

The resulting response in time v(t) can preferably be 
calculated numerically in the environment of the Matlab 
program system [5]. For the need of a numerical solution, 
it is convenient to rewrite the motion Equation (4) in the 
form 
𝑣ሷሺ𝑡ሻ ൌ

ி

௠
sinሺ𝜔 ⋅ 𝑡ሻ െ 2𝜔௕ ⋅ 𝑣ሶ ሺ𝑡ሻ െ 𝜔଴

ଶ ⋅ 𝑣ሺ𝑡ሻ.        (17) 

 The ode45 procedure [6] is used for the solution. The 
substitution y1(t) = v(t), y2(t) = v̇(t) is introduced. Then the 
system of two equations of the 1st order is solved: ẏ1(t) = 
y2(t) and ẏ2(t) = v̈(t).  

% fder.m 
function yder=fder(t, y)   
F=10000;m=24000;om=92.804871; 
omb=12.566371;omo2=94.491118^2; 
yder=[y(2);((F/m)*sin(om*t)-
2*omb*y(2)-omo2*y(1))]; 

 The solution itself is done using the fdere.m script 

% fdere.m 
[t,y]=ode45('fder',[0,1.0],[0,0]); 
subplot(211) 

plot(t,y(:,1)*1000,'LineWidth',1.5); grid 
set(gca,'GridAlpha',0.7); 
xlabel('Timet[s]');ylabel('v(t)[mm]'); 

  The time course of the deflection v(t) in resonance is 
shown in Fig. 6. The maximum deflection reaches the 
value of 0.177·10-3 m. 

 
Fig. 6: Deflection v(t) in resonance, vmax = 0.177 mm. 

 Due to damping, the component of natural vibration 
v0(t) disappears quickly (practically within 0.3 s) and only 
the component of steady forced vibration vp(t) remains, 
representing the particular solution of the motion Equation 
(4). The time course of the individual components in the 
sub-resonance area is shown in Fig. 7 and in the over-
resonance area in Fig. 8. 

 
Fig. 7: Component. v0(t), vp(t), v(t) at ω = 71.209 rad/s,  

sub-resonance area.  

 

Fig. 8: Component v0(t), vp(t), v(t) ω = 163.363 rad/s,  
over-resonance area. 
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4. Influence of Damping 

The dynamic response of the system is significantly 
affected by the damping. which is clearly visible in Fig. 9. 
Amplitude and phase resonance curves are displayed for 
different values of the angular frequency of damping ωb in 
the interval from ωb = 1.0 rad/s to the ωb = ω0/√2 = 66.81 
rad/s, corresponding to so-called semi-critical damping. 

 
Fig. 9: Amplitude and phase resonance curves at various damping. 

5. Conclusion 

Reinforced block concrete foundation is a common type of 
foundation for various equipment. The insulating layer 
between the foundation and the subsoil is intended to 
provide the appropriate damping or to change the natural 
frequency of the system. A layer of cork represents good 
solution in such a case. The foundation analysed above 
shows a satisfactory dynamic response in the entire range 
of working frequencies of the pulsator. Static deflection 
due to the amplitude of the exciting force vst = 0.0466·10-3 
m. At the resonant frequency, ωR = 92.804 rad/s the 
dynamic factor has value δR = 3.7934. Amplitude of 
steady-state forced vibration is vre = 0.177·10-3 m and 
phase shift φR = -1.4362 rad. This is a favourable condition 
that does not have a negative effect on the operation of the 
equipment or on the surrounding environment. If η > 1.389 
(ω > 131.248 rad/s) the dynamic factor δ < 1 and v < vst.   
A problem could arise if the damping properties of the cork 
layer are about to change. If ωb would fall below 0.5, the 
amplitude of steady-state forced vibration can be greater 
than 0.5 mm, which could directly affect the reliable 
operation of the machine. 
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