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Abstract. The paper is focused on recent advances
in uncertainty quantification using polynomial chaos
expansion (PCE). PCE is a well-known technique for
approximation of costly mathematical models with ran-
dom inputs – surrogate model. Although PCE is a
widely used technique and it has several advantages
over various surrogate models, it has still several lim-
itations and research gaps. This paper reviews some
of the recent theoretical developments in PCE. Specif-
ically a new active learning method optimizing the ex-
perimental design and an extension of analytical sta-
tistical analysis using PCE will be reviewed. These two
topics represent crucial tools for efficient applications:
active learning leads generally to a significantly more
efficient construction of PCE and improved statistical
analysis allows for analytical estimation of higher sta-
tistical moments directly from PCE coefficients. Higher
statistical moments can be further used for the iden-
tification of probability distribution and estimation of
design quantiles, which is a crucial task for the proba-
bilistic analysis of structures. Selected applications of
the theoretical methods are briefly presented in a con-
text of civil engineering as well as some preliminary
results of further research. A part of the paper also
presents UQPy package containing state-of-the-art im-
plementation of the PCE theory.
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1. Introduction

The realistic analysis of structures is generally based on
two aspects: the non-linear behavior of mathematical

models and the uncertainty of model parameters (e.g.
material parameters, geometry etc.). Although there
are various numerical methods for non-linear determin-
istic analysis, there is still a lack of efficient methods
for general stochastic analysis. In modern structural
analysis, uncertainties are represented by random vari-
ables described by specific probability distributions,
the structural system can then be seen as a mathe-
matical function of a set of random parameters. Eval-
uations of these functions existing in civil engineering
are typically costly since their solutions are obtained
numerically by the finite element method and it is nec-
essary to reflect also non-linear behavior of the phys-
ical systems. Moreover, due to existing uncertainties
in physical systems and/or their mathematical models,
the analysis of structures must be enriched by stochas-
tic analysis. The elementary task of stochastic analysis
is to propagate uncertainties through a mathematical
model and analyse the quantity of interest (QoI), e.g.
statistical or sensitivity analysis, generally reference as
uncertainty quantification (UQ).

The typical approach for UQ is a well-known crude
Monte Carlo simulation based on a large number
of repetitive deterministic calculations with randomly
generated realizations of an input random vector. Al-
though such an approach leads to accurate results, it
is necessary to perform an enormous number of simu-
lations, which is not feasible in industrial applications.
Therefore, significant attention was recently given to
surrogate models approximating the original mathe-
matical model by simple functions, such as neural net-
works, support vector machines or polynomial chaos
expansion (PCE). This paper is focused on PCE and its
recent theoretical developments. Although uncertainty
quantification has become one of the most growing re-
search fields in the last two decades, it is still challeng-
ing to apply state-of-the-art techniques in practical ap-
plications. Therefore it was also important to develop
efficient but user-friendly software solutions allowing
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fast and accurate analysis of complex mathematical
models. The recent theoretical developments and asso-
ciated state-of-the-art numerical algorithms were thus
implemented into software package UQPy (Uncertainty
Quantification in Python).

2. Recent Theoretical
Developments

The PCE approximates the quantity of interest (QoI)
Y representing a result of the original mathematical
model M(X), as a polynomial expansion of another
random variable ξ called a germ with a given distri-
bution. A set of polynomials, orthogonal with respect
to the probability distribution of the germ, are used
as basis functions. The orthogonality condition for all
j ̸= k is given by the inner product of the Hilbert space
defined for any two functions ψj and ψk with respect
to the weight function pξ (probability density function
of ξ) as:

⟨ψj , ψk⟩ =
∫
ψj(ξ)ψk(ξ)pξ(ξ) dξ = 0. (1)

Orthogonal polynomials ψ corresponding to common
probability distributions pξ can be chosen according
to the Wiener-Askey scheme [1] or numerically con-
structed in the case of an arbitrary probability distri-
bution [2]. In the case of XXX and ξ being vectors con-
taining M random variables, the polynomial Ψ(ξ) is
multivariate and it is built up as a product of univari-
ate orthogonal polynomials.

The QoI Y = M(XXX), can then be represented as [3]:

Y = M(XXX) =
∑

α∈NM

βαΨα(ξ), (2)

where α ∈ NM is a set of integers called the multi-
index, βα are deterministic coefficients and Ψα are
multivariate orthogonal polynomials. For practical
computation, PCE expressed in Eq. (2) must be trun-
cated to a finite number of terms P . The truncation is
commonly achieved by retaining only the terms whose
total degree |α| is less than or equal to a given p.

The truncated PCE is a simple linear regression
model with intercept. Therefore, it is possible to use
ordinary least squares (OLS) regression as simple non-
intrusive solution. In order to use OLS for β estima-
tion, it is necessary to first obtain nsim realizations of
theXXX and the corresponding results Y, together called
the experimental design (ED). Then, the vector of de-
terministic coefficients β is calculated using data ma-
trix Ψ as

β = (ΨTΨ)−1 ΨTY. (3)

The optimal size of ED is clearly affected by the
number of terms P dependent on M and p. Therefore,
it is typically useful to find a sparse solution using ad-
vanced model selection algorithms such as Least Angle
Regression (LAR) [4, 5], orthogonal matching pursuit
[6] or Bayesian compressive sensing [7] to find an opti-
mal set of basis functions further denoted by A.

2.1. Higher Statistical Moments

Once the PCE is constructed, the first statistical mo-
ment (the mean value) is simply the first deterministic
coefficient of the expansion µY =

〈
Y 1

〉
= β0. The

second raw statistical moment,
〈
Y 2

〉
, can be obtained

as

〈
Y 2

〉
=

∫ [∑
α∈A

βαΨα (ξ)

]2

pξ (ξ) dξ (4)

=
∑

α1∈A

∑
α2∈A

βα1βα2

∫
Ψα1 (ξ)Ψα2 (ξ) pξ (ξ) dξ

=
∑
α∈A

β2
α

∫
Ψα (ξ)

2
pξ (ξ) dξ =

∑
α∈A

β2
α ⟨Ψα,Ψα⟩

Considering the orthonormality of the polynomials,
it is possible to obtain the variance as the sum of all
squared deterministic coefficients except the intercept
(which represents the mean value).

Higher statistical central moments, skewness γY (3rd
moment) and kurtosis κY (4th moment), require triple
and quad products of basis functions. These can be
obtained analytically only for certain polynomial fam-
ilies, e.g. formulas for Hermite and Legendre polyno-
mials (and their combination) can be found in recent
publication [8]. The formulas are based on standard
linearization problem for certain polynomial families
and Neumann-Adams formula. Although, the final ex-
pressions use only deterministic coefficients, they can
be computationally expensive for growing P .

Once the first four statistical moments are available,
it is possible to analytically approximate the probabil-
ity density function by the Gram-Charlier expansion
as depicted in Fig. 1. The additional information
in form of higher moments can be thus used for the
construction of arbitrary distribution corresponding to
QoI. Moreover, it was shown in recent publication [8],
that it is also possible to derive analytical formula for
cumulative distribution function and use it further for
moment-independent sensitivity analysis.

2.2. Active Learning

The size of ED for accurate PCE is affected not only
by P but also by a position of each data point in a de-
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Fig. 1: Role of higher statistical moments in estimation of prob-
ability distribution.

sign domain, i.e. amount of information associated to
each data point. Therefore, it is important to find the
optimal position of realizations in the design domain
extracting the highest possible amount of information
about the original mathematical model. This task is
generally referenced as active learning. Active learning
should reflect two aspects: exploration of the design do-
main leading to identification of important locations,
and exploitation of the available information about the
mathematical model. An ideal active learning scheme
should combine both aspects as recently proposed Θ-
criterion designed specifically for PCE [9] resulting to
optimal sampling schemes for given PCE and math-
ematical model (see Fig. 2). This approach selects
the best candidate for extension of existing ED asso-
ciated to high variance density (local contribution to
the variance of QoI) as well as to large contribution to
the exploration part of the criterion (distance from the
existing data points in ED):

Θ(ξ(c)) ≡ Θc =
√
σ2
A(ξ(c)) · σ2

A(ξ(s))

ave variance density

lMc,s
vol.

. (5)

The exploration aspect is maintained by accounting
for the distance lc,s between a candidate ξ(c) and its
nearest neighboring realization from the existing ED,
ξ(s) as

lc,s =

√√√√ M∑
i=1

|ξ(c)i − ξ
(s)
i |2. (6)

The exploitation component aims to sample points
in regions with the greatest contributions to the total
variance of the QoI σ2

Y , i.e. at points with the highest
variance density (see Eq. 4) defined as

σ2
A(ξ) =

[ ∑
α∈A, α̸=0

βαΨα (ξ)
]2
pξ (ξ) . (7)

2.3. Uncertainty Quantification in
Python

The theory of PCE together with presented recent ad-
vances was implemented into the new version of open-

source UQPy package [10]. UQPy represents multi-
purpose complex software package for python contain-
ing recently developed techniques for uncertainty quan-
tification including PCE, more details can be found on
the official website, see QR codes in Fig. 3. UQPy con-
tains several modules associated to common techniques
for uncertainty quantification: probability distribu-
tions, statistical sampling, probabilistic transforma-
tion, stochastic processes, dimension reduction, infer-
ence, reliability analysis, surrogate modeling and sensi-
tivity analysis. State-of-the-art techniques are present
in each of the modules. The module for surrogate mod-
eling contains various types of approximation including
also presented PCE. The PCE module in UQPy con-
tains techniques developed foran advanced statistical
sampling, efficient construction of the approximation
(e.g. truncation schemes, sparse solvers [11]) and its
post-processing (e.g. Sobol indicies and complex sta-
tistical information derived from PCE). UQPy can be
easily used for practical applications as well as for re-
search, since it is an open-source package and anyone
can contribute to the UQPy code once their contri-
butions pass the quality checks. Such environment is
ideal for further development of UQ methods as well
as for routine applications of the theoretical methods
in industry.

3. Selected Practical
Applications

The theoretical background and recent advances have
been applied already in several real-life examples from
civil engineering and obtained results were partly pub-
lished. Here we summarize two selected applications:
a) Approximation of mathematical model represent-
ing a prestressed roof girder(see fig 4), which was fur-
ther used for sensitivity analysis and optimization, b)
statistical and sensitivity analysis of existing concrete
bridge. Both approximations were constructed using
advanced numerical algorithms and developed theoret-
ical methods later implemented to UQPy.

3.1. Prestressed Roof Girders

The prestressed reinforced concrete roof girder is ex-
tensively described in [12]. Non-linear computational
model of pre-stressed girder (see fig. 5) was created us-
ing ATENA Science software environment [13]. Geom-
etry of beam and reinforcement was modelled exactly
according to drawings provided by manufacturer. Two
linear supports were used for the model, since rollers
were used during test. Regular hexagonal FE mesh
composed of 16728 finite elements was generated in
the program GID preprocessor. The mesh has been
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Fig. 2: Different shapes of mathematical models and associated optimal experimental design obtained by an active learning.

condensed in the area of assumed shear failure. Pre-
stressing is applied as initial strain for reinforcement
line. This application ensured that loss of prestressing
due to elastic deformation of concrete was calculated
explicitly. Material characteristics of concrete were ob-
tained by laboratory experiments, including compres-
sive strength of concrete fc, tensile strength of concrete
fct, fracture energy Gf and Young’s modulus E. Sta-
tistical parameters of tendons and steel were assumed
according to JCSS [14]. Full stochastic model contains
14 correlated random variables and correlation matrix
of concrete material parameters was estimated from
experimental results [12].

Latin Hypercube Sampling method was performed
to generate 100 realizations in uncorrelated space. Be-
cause of the assumption of correlation among random
variables, they were transformed to correlated space
assuming Gaussian Copula using Nataf transforma-
tion. Evaluation of the original NLFEM was performed
once the samples in correlated space were prepared
and PCE was further constructed by non-intrusive ap-
proach. Specifically, a truncated set of basis functions
was obtained by total-order scheme with p = 8 and
number of basis functions was further reduced by LAR.
Obtained accuracy of PCE was measured by leave-one-
out-error Q = 0.01 and it shows suitable accuracy for
statistical or sensitivity analysis, though it could lead
to significant errors in a reliability analysis and an es-
timation of extreme quantiles of PDF. More details
about the process of surrogate modeling can be found
in previous studies of authors [15, 16].

Fig. 3: UQPy software: left) QR code leading to Git-Hub repos-
itory containing the open-source code in python, mid-
dle) the graphical logo representing the package, right)
QR code leading to documentation of the package.

The main task was sensitivity analysis of the QoI,
since the stochastic model contains a several uncer-
tain parameters with complicated correlation struc-
ture. Therefore, various types of sensitivity analysis
were performed [17]: Spearman rank-order correlation,
Sobol indices see in Fig. 6 and finally analysis of co-
variance (generalization of Sobol indices). On the one
hand, Spearman rank-order correlation measures the
strength and direction of association among variables
and on the other hand, ANCOVA measures contribu-
tion of input variable to the output variance. Moreover,
sensitivity analysis also directly quantified the role of
correlation among random variables. Obtained results
further served for reduction of stochastic model and
optimization of girders [18].

3.2. Concrete Bridge

The existing post-tensioned concrete bridge has three
spans. The super-structure of the mid-span is 19.98
m long with total width 16.60 m and it is crucial part
of the bridge for assessment. In transverse direction,
each span is constructed from 16 bridge girders KA-61
commonly used in Czech Republic. Load is applied ac-
cording to national annex of Eurocode for load-bearing
capacity of road bridges by exclusive loading (by six-
axial truck).

The non-linear finite element model (NLFEM) is cre-
ated using software ATENA Science based on theory
of non-linear fracture mechanics [13]. In order to re-
flect complex behavior of the bridge, the numerical
model contains three construction phases as illustrated
in Fig.7. The NLFEM consists of 13,000 elements of
hexahedra type in the major part of the volume and
triangular ‘PRISM’ elements in the part with compli-
cated geometry. Reinforcement and tendons are repre-
sented by discrete 1D elements with geometry accord-
ing to original documentation. The numerical model
is further analysed in order to investigate the following
three limit states: ultimate limit state, first occurrence
of bending cracks, decompression in prestressed con-
crete.
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Fig. 4: Complex long-term research of prestressed concrete roof girders: material experiments, scaled destructive tests and nu-
merical modeling.

Fig. 5: Non-linear finite element model of prestressed concrete
roof girders in software Atena Science.

fc (64%)

ft (19%)

Gf (12%)

E (3%)

Losses in
prestressing
(2%)

Fig. 6: Sobol indices of the analyzed pre-stressed concrete roof
girder.

Fig. 7: The analyzed post-tensioned concrete bridge. Top: pho-
tography of the bridge; bottom: non-linear finite ele-
ment model of the bridge.

The stochastic model contains 4 random material
parameters of a concrete C50/60: Young’s modulus;
compressive strength of concrete fc; tensile strength
of concrete fct and fracture energy Gf . Characteristic
values of E, fct, Gf were determined from fc according
to formulas implemented in the fib Model Code 2010
[19] (Gf , E) and prEN 1992-1-1: 2021 (fct). The last
random variable P represents prestressing losses with
CoV according to JCSS: Probabilistic Model Code [14].
Mean values and coefficients of variation were obtained
according to prEN 1992-1-1: 2021 (Annex A) for ad-
justment of partial factors for materials.

The experimental design (ED) contains 30 numer-
ical simulations generated by Latin Hypercube Sam-
pling (LHS). Note that each simulation takes approx-
imately 24 hours and construction of the whole ED
took approx. 1 week of computational time. PCE was
constructed using advanced adaptive p ∈ [5, 10] algo-
rithm together with Least Angle Regression algorithm
implemented in UQPy. Obtained accuracy of PCE was
measured by leave-one-out-error Q = 0.002. Once the
approximation was created, it was possible to perform
million of simulations instantly to identify histograms
and distributions of analyzed limit states (e.g., see Fig.
8). Note that although the difference is not significant,
it leads to dramatic differences in estimated quantiles
used for estimation of the design value of resistance.

4. Conclusion

The paper presented recent theoretical developments in
PCE significantly extending its applicability in uncer-
tainty quantification of structures. Combination of ex-
tended statistical analysis with improved efficiency by
active learning leads to computationally effective and
accurate tool for UQ of costly mathematical models as
was shown in selected two industrial examples. A part
of the paper presented also a UQPy, an open-source
package for python containing state-of-the-art theoret-
ical techniques and efficient algorithms for UQ. UQPy
offers unique combination of computational efficiency
with user-friendly architecture and thus it can be eas-
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Fig. 8: The histogram of the analyzed limit state: decompres-
sion of the prestressed concrete. Red line corresponds
to analytical estimation of PDF by Gram-Charlier Ex-
pansion.

ily used for practical applications. Note that surrogate
models in both practical applications were based on
one-shot ED created by LHS. Although the obtained
accuracy was sufficient for performed UQ tasks, fur-
ther work will be focused on application of the recently
proposed active learning algorithm in order to improve
their accuracy allowing for reliability analysis.
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